nordsmog
Cock mogger
- Joined
- Nov 30, 2022
- Posts
- 667
- Reputation
- 1,443
I’ve looked through all the major articles opposed to bonesmashing (bar an NCBI one because it required a log-in cba), and been in the community long enough to see the extent of the arguments from both sides. The problem i’ve noticed is that all of the issues brought up against bone smashing either rely on denying the actual process behind bone remodeling (it only makes the bones denser not larger, the microfractures don’t grow bone, etc) or some sort of complaint that essentially boils down to a skill issue. There seems to be an overwhelming amount of scientific evidence and even simple reasoning against these arguments. So I’ll briefly go through the arguments commonly used against bonesmashing, provide a few sources, and reasoning behind my claims.
How do we know bone can remodel, how do we know this is what Wolff’s Law is claiming and if the law is even true or not?
There is an overwhelming amount of evidence that Wolff’s law is not only true, but applies to a broader range of people than a lot of users will claim. I’ve linked a few articles below provided by Christopher Ruff, who has a PHD in biological anthropology and has been studying skeletal morphology for years. His information/credentials will also be linked below, keep in mind this is not the full extent of the evidence and I encourage you to do research of your own.
https://onlinelibrary.wiley.com/doi/10.1002/ajpa.20371
Christopher Ruff (Credentials)
https://doi.org/10.1056/NEJMoa022464
https://onlinelibrary.wiley.com/doi/10.1359/jbmr.2002.17.12.2274
https://doi.org/10.1056%2FNEJMoa022464
How do we know applied force will increase the actual physical dimensions of a bone, and not just the density of it?
According to Zhang’s law of dynamic deformation, applied forces can not only change the density of a bone, but also the shape, diameter, length, curve and alignment before and after skeletal maturity.
“According to Wolff's law, bones in the living body will adapt to mechanical loads under which they are placed.[1] If loads on a particular bone increase, the bone will remodel to become thicker and stronger to resist the loads. The inverse is also true; if loads on a bone decrease, the bone will become thinner and weaker.“
“According to Zhang's law of dynamic deformation of bone, the morphology of bone in a living body, including the shape, diameter, length, curve and alignment of the bone, adapt to long-term loads both before and after skeletal maturity. According to the magnitude of strain, the mode of action, the location site, and the quality of bone, the resulting deformations and rates are different.“
(The original sources are in Chinese, so I just linked an English NCBI article)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6846251/#:~:text=According%20to%20Wolff's%20law%2C%20bones,will%20become%20thinner%20and%20weaker.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213826/
Okay, but can I really hit my bones hard enough to cause these microfractures and remodeling?
https://emedicine.medscape.com/article/84613-overview?form=fpf#a5
So bit of quick math, an average adult male’s hand is ~1 pound, and can punch at 3-7 m/s with a typical impact time of .01 seconds. I got lazy and ran the calculations through chatgpt, which I’ll list below and appears to be accurate nonetheless.
(Mind that the input of the data, particularly the punch speed, is skewed a bit higher than the average here but notice that it’s well above the 50g required for an actual full fracture of the zygoma (cheekbones), let alone the much less significant force needed for microfractures)
Calculations aside, it only stands to reason that if I can already take a hammer and hit + fully or partially fracture a bone on my face, I can apply less force and get a tiny fraction of that. Much of this is backed up in previous articles I sent, microfractures do not require an inordinate amount of force even in day to day activity.
What if it causes assymetry? How can you control how much bone mass is created?
This sort of goes back to the “skill issue” point I was eluding to earlier, all of these problems can be worked around with a solid amount of research and planning. Remember that YOU control which bone and what part of it is getting hit, YOU control how much force is being applied.
The fact is we are all ALREADY asymmetrical and this is not a massive problem for most. The process of smashing and remodeling your bone structure will take months or years, smashing too much on one side for a day will not be significant in the grand scheme of things. It’s akin to training your dominant arm more than your non dominant arm every so often, the difference is not significant and can even just simply be corrected for with more remodeling on the less prominent side.
Anyways, I’ve spent a bit of time on this research and I encourage discussion and objections. It’s very possible I’m missing something here, so feel free to let me know of any faults in my reasoning
How do we know bone can remodel, how do we know this is what Wolff’s Law is claiming and if the law is even true or not?
There is an overwhelming amount of evidence that Wolff’s law is not only true, but applies to a broader range of people than a lot of users will claim. I’ve linked a few articles below provided by Christopher Ruff, who has a PHD in biological anthropology and has been studying skeletal morphology for years. His information/credentials will also be linked below, keep in mind this is not the full extent of the evidence and I encourage you to do research of your own.
https://onlinelibrary.wiley.com/doi/10.1002/ajpa.20371
Christopher Ruff (Credentials)
https://doi.org/10.1056/NEJMoa022464
https://onlinelibrary.wiley.com/doi/10.1359/jbmr.2002.17.12.2274
https://doi.org/10.1056%2FNEJMoa022464
How do we know applied force will increase the actual physical dimensions of a bone, and not just the density of it?
According to Zhang’s law of dynamic deformation, applied forces can not only change the density of a bone, but also the shape, diameter, length, curve and alignment before and after skeletal maturity.
“According to Wolff's law, bones in the living body will adapt to mechanical loads under which they are placed.[1] If loads on a particular bone increase, the bone will remodel to become thicker and stronger to resist the loads. The inverse is also true; if loads on a bone decrease, the bone will become thinner and weaker.“
“According to Zhang's law of dynamic deformation of bone, the morphology of bone in a living body, including the shape, diameter, length, curve and alignment of the bone, adapt to long-term loads both before and after skeletal maturity. According to the magnitude of strain, the mode of action, the location site, and the quality of bone, the resulting deformations and rates are different.“
(The original sources are in Chinese, so I just linked an English NCBI article)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6846251/#:~:text=According%20to%20Wolff's%20law%2C%20bones,will%20become%20thinner%20and%20weaker.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6213826/
Okay, but can I really hit my bones hard enough to cause these microfractures and remodeling?
https://emedicine.medscape.com/article/84613-overview?form=fpf#a5
So bit of quick math, an average adult male’s hand is ~1 pound, and can punch at 3-7 m/s with a typical impact time of .01 seconds. I got lazy and ran the calculations through chatgpt, which I’ll list below and appears to be accurate nonetheless.
(Mind that the input of the data, particularly the punch speed, is skewed a bit higher than the average here but notice that it’s well above the 50g required for an actual full fracture of the zygoma (cheekbones), let alone the much less significant force needed for microfractures)
Calculations aside, it only stands to reason that if I can already take a hammer and hit + fully or partially fracture a bone on my face, I can apply less force and get a tiny fraction of that. Much of this is backed up in previous articles I sent, microfractures do not require an inordinate amount of force even in day to day activity.
What if it causes assymetry? How can you control how much bone mass is created?
This sort of goes back to the “skill issue” point I was eluding to earlier, all of these problems can be worked around with a solid amount of research and planning. Remember that YOU control which bone and what part of it is getting hit, YOU control how much force is being applied.
The fact is we are all ALREADY asymmetrical and this is not a massive problem for most. The process of smashing and remodeling your bone structure will take months or years, smashing too much on one side for a day will not be significant in the grand scheme of things. It’s akin to training your dominant arm more than your non dominant arm every so often, the difference is not significant and can even just simply be corrected for with more remodeling on the less prominent side.
Anyways, I’ve spent a bit of time on this research and I encourage discussion and objections. It’s very possible I’m missing something here, so feel free to let me know of any faults in my reasoning