Asian dude fights off 4 black dudes

JeanneDArcAlter

JeanneDArcAlter

Crushing loneliness
Joined
Nov 6, 2024
Posts
23,925
Reputation
37,927
tan^cos(x^y)(x^y) = (π/2)^(i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (4^s (x^y)^(-2 s) Γ(s))/Γ(1/2 - s) ds) ( integral_0^∞ (-1 + t^((2 x^y)/π))/(-1 + t^2) dt)^(-i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (4^s (x^y)^(-2 s) Γ(s))/Γ(1/2 - s) ds) for (0<γ<1/2 and x^y>0 and 0<Re(x^y)<π/2)
1737481682179


tan^cos(x^y)(x^y) = 8^( sum_(k=0)^∞ ((-1)^k (x^y)^(2 k))/(2 k)!) (x^y sum_(k=1)^∞ 1/((1 - 2 k)^2 π^2 - 4 x^(2 y)))^( sum_(k=0)^∞ ((-1)^k (x^y)^(2 k))/(2 k)!) for -1/2 + x^y/π not element Z
 
  • JFL
Reactions: Deleted member 110701
{(x, y) element R^2 : (x^y/π + 1/2 not element Z and x!=0 and cos(x^y)!=0 and tan(x^y)>=0 and y element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and cos(x^y)!=0 and tan(x^y)>=0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and x>=0 and cos(x^y)!=0 and tan(x^y)>=0 and y>0) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>0 and cos(x^y)!=0 and tan(x^y)>=0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>0)}
 
  • JFL
Reactions: Deleted member 110701
:what:
 
  • +1
Reactions: JeanneDArcAlter
I would literally believe it more if u said a black woman fought 100 Asians tbh
 
  • JFL
Reactions: JeanneDArcAlter
I would literally believe it more if u said a black woman fought 100 Asians tbh
tan^cos(x^y)(x^y) = (i ( sum_(k=1)^∞ (-1)^k e^(2 i k x^y) - sum_(k=-∞)^(-1) (-1)^k e^(2 i k x^y)))^(sqrt(π) sum_(j=0)^∞ Res_(s=-j) (4^s (x^(2 y))^(-s) Γ(s))/Γ(1/2 - s))
1737337553479y
 
{(x, y) element R^2 : (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)!=0 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x!=0 and cos(x^y)>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and tan(x^y)!=0 and y>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and cos(x^y)>=1 and y>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>=0 and cos(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>=0 and cos(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)!=0 and y>0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>=0 and cos(x^y)>=1 and y>0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)!=0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>0 and cos(x^y)>=1 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>=0 and cos(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>=0 and cos(x^y)>0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>0)}
Download 6
 

Similar threads

JeanneDArcAlter
Replies
9
Views
142
JeanneDArcAlter
JeanneDArcAlter
JeanneDArcAlter
Discussion This wave
Replies
14
Views
164
JeanneDArcAlter
JeanneDArcAlter
JeanneDArcAlter
Discussion Headphones
Replies
14
Views
463
JeanneDArcAlter
JeanneDArcAlter
xnj
Replies
438
Views
28K
Brotato123
Brotato123

Users who are viewing this thread

Back
Top