Asian dude fights off 4 black dudes

JeanneDArcAlter

JeanneDArcAlter

Fire
Joined
Nov 6, 2024
Posts
24,039
Reputation
38,112
tan^cos(x^y)(x^y) = (π/2)^(i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (4^s (x^y)^(-2 s) Γ(s))/Γ(1/2 - s) ds) ( integral_0^∞ (-1 + t^((2 x^y)/π))/(-1 + t^2) dt)^(-i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (4^s (x^y)^(-2 s) Γ(s))/Γ(1/2 - s) ds) for (0<γ<1/2 and x^y>0 and 0<Re(x^y)<π/2)
1737481682179


tan^cos(x^y)(x^y) = 8^( sum_(k=0)^∞ ((-1)^k (x^y)^(2 k))/(2 k)!) (x^y sum_(k=1)^∞ 1/((1 - 2 k)^2 π^2 - 4 x^(2 y)))^( sum_(k=0)^∞ ((-1)^k (x^y)^(2 k))/(2 k)!) for -1/2 + x^y/π not element Z
 
  • JFL
Reactions: Deleted member 110701
{(x, y) element R^2 : (x^y/π + 1/2 not element Z and x!=0 and cos(x^y)!=0 and tan(x^y)>=0 and y element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and cos(x^y)!=0 and tan(x^y)>=0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and x>=0 and cos(x^y)!=0 and tan(x^y)>=0 and y>0) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>0 and cos(x^y)!=0 and tan(x^y)>=0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>0)}
 
  • JFL
Reactions: Deleted member 110701
:what:
 
  • +1
Reactions: JeanneDArcAlter
I would literally believe it more if u said a black woman fought 100 Asians tbh
 
  • JFL
Reactions: JeanneDArcAlter
I would literally believe it more if u said a black woman fought 100 Asians tbh
tan^cos(x^y)(x^y) = (i ( sum_(k=1)^∞ (-1)^k e^(2 i k x^y) - sum_(k=-∞)^(-1) (-1)^k e^(2 i k x^y)))^(sqrt(π) sum_(j=0)^∞ Res_(s=-j) (4^s (x^(2 y))^(-s) Γ(s))/Γ(1/2 - s))
1737337553479y
 
{(x, y) element R^2 : (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)!=0 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x!=0 and cos(x^y)>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and tan(x^y)!=0 and y>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and cos(x^y)>=1 and y>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>=0 and cos(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>=0 and cos(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)!=0 and y>0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>=0 and cos(x^y)>=1 and y>0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)!=0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>0 and cos(x^y)>=1 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>=0 and cos(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>=0 and cos(x^y)>0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>0)}
Download 6
 

Similar threads

JeanneDArcAlter
Replies
9
Views
145
JeanneDArcAlter
JeanneDArcAlter
menas
Replies
79
Views
757
Neucher
Neucher
JeanneDArcAlter
Discussion This wave
Replies
14
Views
165
JeanneDArcAlter
JeanneDArcAlter
Krios
Replies
17
Views
262
AverageCurryEnjoyer
AverageCurryEnjoyer

Users who are viewing this thread

Back
Top