Asian dude fights off 4 black dudes

JeanneDArcAlter

JeanneDArcAlter

Banned
Joined
Nov 6, 2024
Posts
27,316
Reputation
43,454
tan^cos(x^y)(x^y) = (π/2)^(i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (4^s (x^y)^(-2 s) Γ(s))/Γ(1/2 - s) ds) ( integral_0^∞ (-1 + t^((2 x^y)/π))/(-1 + t^2) dt)^(-i/(2 sqrt(π)) integral_(-i ∞ + γ)^(i ∞ + γ) (4^s (x^y)^(-2 s) Γ(s))/Γ(1/2 - s) ds) for (0<γ<1/2 and x^y>0 and 0<Re(x^y)<π/2)
1737481682179


tan^cos(x^y)(x^y) = 8^( sum_(k=0)^∞ ((-1)^k (x^y)^(2 k))/(2 k)!) (x^y sum_(k=1)^∞ 1/((1 - 2 k)^2 π^2 - 4 x^(2 y)))^( sum_(k=0)^∞ ((-1)^k (x^y)^(2 k))/(2 k)!) for -1/2 + x^y/π not element Z
 
  • JFL
Reactions: Deleted member 110701
{(x, y) element R^2 : (x^y/π + 1/2 not element Z and x!=0 and cos(x^y)!=0 and tan(x^y)>=0 and y element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and cos(x^y)!=0 and tan(x^y)>=0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and x>=0 and cos(x^y)!=0 and tan(x^y)>=0 and y>0) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>0 and cos(x^y)!=0 and tan(x^y)>=0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>0)}
 
  • JFL
Reactions: Deleted member 110701
:what:
 
  • +1
Reactions: JeanneDArcAlter
I would literally believe it more if u said a black woman fought 100 Asians tbh
 
  • JFL
Reactions: JeanneDArcAlter
I would literally believe it more if u said a black woman fought 100 Asians tbh
tan^cos(x^y)(x^y) = (i ( sum_(k=1)^∞ (-1)^k e^(2 i k x^y) - sum_(k=-∞)^(-1) (-1)^k e^(2 i k x^y)))^(sqrt(π) sum_(j=0)^∞ Res_(s=-j) (4^s (x^(2 y))^(-s) Γ(s))/Γ(1/2 - s))
1737337553479y
 
{(x, y) element R^2 : (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)!=0 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x!=0 and cos(x^y)>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and tan(x^y)!=0 and y>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and cos(x^y)>=1 and y>=1 and y element Z and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>=0 and cos(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and x!=0 and tan(x^y)>0 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>=0 and cos(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and tan(x^y)>0 and y>=1 and y element Z) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)!=0 and y>0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>=0 and cos(x^y)>=1 and y>0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)!=0 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>0 and cos(x^y)>=1 and cos(x^y) element Z) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>=0 and cos(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>=0 and tan(x^y)>0 and y>0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>=0 and cos(x^y)>0) or (x^y/π + 1/2 not element Z and x>0 and tan(x^y)>0)}
Download 6
 

Similar threads

D
Replies
5
Views
662
coolman985
coolman985
menas
Replies
33
Views
644
itzyaboyJJ
itzyaboyJJ
mcmentalonthemic
Replies
26
Views
879
dovka
D

Users who are viewing this thread

Back
Top