Sugar Megathread

Deleted member 6403

Deleted member 6403

Made It Out The Hood
Joined
Apr 14, 2020
Posts
56,262
Reputation
96,665
Sugar issues

Since the first doctor noticed, hundreds of years ago, that the urine of a diabetic patient tasted sweet, it has been common to call the condition the sugar disease, or sugar diabetes, and since nothing was known about physiological chemistry, it was commonly believed that eating too much sugar had to be the cause, since the ability of the body to convert the protein in tissues into sugar wasn’t discovered until 1848, by Claude Bernard (who realized that diabetics lost more sugar than they took in). Even though patients continued to pass sugar in their urine until they died, despite the elimination of sugar from their diet, medical policy required that they be restrained to keep them from eating sugar. That prescientific medical belief, that eating sugar causes diabetes, is still held by a very large number, probably the majority, of physicians.
Originally, diabetes was understood to be a wasting disease, but as it became common for doctors to measure glucose, obese people were often found to have hyperglycemia, so the name diabetes has been extended to them, as type 2 diabetes. High blood sugar is often seen along with high blood pressure and obesity in Cushing's syndrome, with excess cortisol, and these features are also used to define the newer metabolic syndrome.
Following the old reasoning about the sugar disease, the newer kind of obese diabetes is commonly blamed on eating too much sugar. Obesity, especially a fat waist, and all its associated health problems, are said by some doctors to be the result of eating too much sugar, especially fructose. (Starch is the only common carbohydrate that contains no fructose.) Obesity is associated not only with diabetes or insulin resistance, but also with atheroslcerosis and heart disease, high blood pressure, generalized inflammation, arthritis, depression, risk of dementia, and cancer.
There is general agreement about the problems commonly associated with obesity, but not about the causes or the way to prevent or cure obesity and the associated conditions.
In an earlier newsletter, I wrote about P. A. Piorry in Paris, in 1864, and Dr. William Budd in England, in 1867, who treated diabetes by adding a large amount of ordinary sugar, sucrose, to the patient's diet. Glucose was known to be the sugar appearing in the diabetics' urine, but sucrose consists of half glucose, and half fructose. In 1874, E. Kulz in Germany reported that diabetics could assimilate fructose better than glucose. In the next decades there were several more reports on the benefits of feeding fructose, including the reduction of glucose in the urine. With the discovery of insulin in 1922, fructose therapy was practically forgotten, until the 1950s when new manufacturing techniques began to make it economical to use.
Its use in diabetic diets became so popular that it became available in health food stores, and was also used in hospitals for intravenous feeding.
However, while fructose was becoming popular, the cholesterol theory of heart disease was being promoted. This was the theory that eating foods containing saturated fat and cholesterol caused heart disease. (My newsletter, Cholesterol, longevity, intelligence, and health, discussed the development of that theory.)
A Swedish physician and researcher, Uffe Ravnskov, has reviewed the medical arguments for the theory that lipids in the blood are the cause of atherosclerosis and heart disease, and shows that there has never been evidence of causality, something which some people, such as Broda Barnes, understood from the beginning. In the 1950s, an English professor, John Yudkin, didn't accept the idea that eating saturated fat was the cause of high blood levels of triglycerides and cholesterol, but he didn’t question the theory that lipids in the blood caused the circulatory disease. He argued that it was sugar, especially the fructose component of sucrose, rather than dietary fat, that caused the high blood lipids seen in the affluent countries, and consequently the diseases. He was sure it was a specific chemical effect of the fructose, because he argued that the nutrients that were removed in refining white flour and white sugar were insignificant, in the whole diet.
Following the publication of Yudkin's books, and coinciding with increasing promotion of the health benefits of unsaturated vegetable oils, many people were converted to Yudkin's version of the lipid theory of heart disease, i.e., that the "bad lipids" in the blood are the result of eating sugar. This has grown into essentially a cult, in which sugar is believed to act like an intoxicant, forcing people to eat until they become obese, and develop the "metabolic syndrome," and "diabetes," and the many problems that derive from that.
The publicity campaign against "saturated fat" as an ally of cholesterol derived its support from the commercial promotion of the polyunsaturated seed oils as food for humans. Although the early investigators of vitamin E knew that the polyunsaturated oils could cause sterility, and others later found that their use in commercial animal foods could cause brain degeneration, there were a few biologists (mostly associated with George Burr) who believed that this type of fatty acid is an essential nutrient.
George and Mildred Burr had created what they claimed to be a disease in rats caused by the absence of linoleic or linolenic acid in their food. Although well known researchers had previously published evidence that animals on a fat free diet were healthy--even healthier than on a normal diet--Burr and his wife published their contradictory claim without bothering to discuss the conflicting evidence. I haven't seen any instance in which Burr or his followers ever mentioned the conflicting evidence. Although other biologists didn't accept Burr's claims, and several researchers subsequently published contrary results, he later became famous when the seed oil industry wanted scientific-seeming reasons for selling their product as an "essential" food. The fact that eating the polyunsaturated fats could cause the blood cholesterol level to decrease slightly was advertised as a health benefit. Later, when human trials showed that more people on the "heart healthy" diet died of heart disease and cancer, more conventional means of advertising were used instead of human tests.
Burr's experimental diet consisted of purified casein (milk protein) and purified sucrose, supplemented with a vitamin concentrate and some minerals. Several of the B vitamins weren't known at the time, and the mineral mixture lacked zinc, copper, manganese, molybdenum, and selenium. More of the essential nutrients were unknown in his time than in Yudkin's, so his failure to consider the possibility of other nutritional deficiencies affecting health is more understandable.
In 1933, Burr observed that his fat-deficient rats consumed oxygen at an extremely high rate, and even then, the thought didn't occur to him that other nutritional deficiencies might have been involved in the condition he described. Ordinarily, the need for vitamins and minerals corresponds to the rate at which calories are being burned, the metabolic rate. Burr recalled that the rats on the fat free diet drank more water, and he reasoned that the absence of linoleic or linolenic acid in their skin was allowing water vapor to escape at a high rate. He didn't explain why the saturated fats the rats were synthesizing from sugar didn't serve at least as well as a "vapor barrier"; they are more effective at water-proofing than unsaturated fats, because of their greater hydrophobicity. The condensed and cross-linked keratin protein in skin cells is the main reason for the skin's relatively low permeability. When an animal is burning calories at a higher rate, its sweat glands are more actively maintaining a normal body temperature, cooling by evaporation; the amount of water evaporated is an approximate measure of metabolic rate, and of thyroid function.
In 1936, a man in Burr's lab, William Brown, agreed to eat a similar diet for six months, to see whether the "essential fatty acid deficiency" affected humans as it did rats.
The diet was very similar to the rats', with a large part of the daily 2500 calories being provided at hourly intervals during the day by sugar syrup (flavored with citric acid and anise oil), protein from 4 quarts of special fat-free skimmed milk, a quart of which was made into cottage cheese, the juice of half an orange, and a "biscuit" made with potato starch, baking powder, mineral oil, and salt, with iron, viosterol (vitamin D), and carotene supplemented.
Brown had suffered from weekly migraine headaches since childhood, and his blood pressure was a little high when he began the diet. After six weeks on the diet, his migraines stopped, and never returned. His plasma inorganic phosphorus declined slightly during the experiment (3.43 mg./100 cc. of plasma and 2.64 on the diet, and after six months on a normal diet 4.2 mg.%), and his total serum proteins increased from 6.98 gm.% to 8.06 gm.% on the experimental diet. His leucocyte count was lower on the high sugar diet, but he didn't experience colds or other sickness. On a normal diet, his systolic blood pressure varied from 140 to 150 mm. of mercury, the diastolic, 95 to 100. After a few months on the sugar and milk diet, his blood pressure had lowered to about 130 over 85 to 88. Several months after he returned to a normal diet, his blood pressure rose to the previous level.
On a normal diet, his weight was 152 pounds, and his metabolic rate was from 9% to 12% below normal, but after six months on the diet it had increased to 2% below normal. After three months on the sugar and milk diet, his weight leveled off at 138 pounds. After being on the diet, when he ate 2000 calories of sugar and milk within two hours, his respiratory quotient would exceed 1.0, but on his normal diet his maximum respiratory quotient following those foods was less than 1.0.
The effect of diabetes is to keep the respiratory quotient low, since a respiratory quotient of one corresponds to the oxidation of pure carbohydrate, and extreme diabetics oxidize fat in preference to carbohydrate, and may have a quotient just a little above 0.7. The results of Brown's and Burr's experiments could be interpreted to mean that the polyunsaturated fats not only lower the metabolic rate, but especially interfere with the metabolism of sugars. In other words, they suggest that the normal diet is diabetogenic.
During the six months of the experiment, the unsaturation of Brown's serum lipids decreased. The authors reported that "There was no essential change in the serum cholesterol as a result of the change in diet." However, in November and December, two months before the experiment began, it had been 252 mg.% in two measurements. At the beginning of the test, it was 298, two weeks later, 228, and four months later, 206 mg%. The total quantity of lipids in his blood didn't seem to change much, since the triglycerides increased as the cholesterol decreased.
By the time of Brown's experiment, other researchers had demonstrated that the cholesterol level was increased in hypothyroidism, and decreased as thyroid function, and oxygen consumption, increased. If Burr's team had been reading the medical literature, they would have understood the relation between Brown's increased metabolic rate and decreased cholesterol level. But they did record the facts, which is valuable.
The authors wrote that "The most interesting subjective effect of the 'fat-free' regimen was the definite disappearance of a feeling of fatigue at the end of the day's work."
A lowered metabolic rate and energy production is a common feature of aging and most degenerative diseases. From the beginning of an animal's life, sugars are the primary source of energy, and with maturation and aging there is a shift toward replacing sugar oxidation with fat oxidation. Old people are able to metabolize fat at the same rate as younger people, but their overall metabolic rate is lower, because they are unable to oxidize sugar at the same high rate as young people. Fat people have a similar selectively reduced ability to oxidize sugar.
Stress and starvation lead to a relative reliance on the fats stored in the tissues, and the mobilization of these as circulating free fatty acids contributes to a slowing of metabolism and a shift away from the use of glucose for energy. This is adaptive in the short term, since relatively little glucose is stored in the tissues (as glycogen), and the proteins making up the body would be rapidly consumed for energy, if it were not for the reduced energy demands resulting from the effects of the free fatty acids.
One of the points at which fatty acids suppress the use of glucose is at the point at which it is converted into fructose, in the process of glycolysis. When fructose is available, it can by-pass this barrier to the use of glucose, and continue to provide pyruvic acid for continuing oxidative metabolism, and if the mitochondria themselves aren't providing sufficient energy, it can leave the cell as lactate, allowing continuing glycolytic energy production. In the brain, this can sustain life in an emergency.
Many people lately have been told, as part of a campaign to explain the high incidence of fatty liver degeneration in the US, supposedly resulting from eating too much sugar, that fructose can be metabolized only by the liver. The liver does have the highest capacity for metabolizing fructose, but the other organs do metabolize it.
If fructose can by-pass the fatty acids' inhibition of glucose metabolism, to be oxidized when glucose can't, and if the metabolism of diabetes involves the oxidation of fatty acids instead of glucose, then we would expect there to be less than the normal amount of fructose in the serum of diabetics, although their defining trait is the presence of an increased amount of glucose. According to Osuagwu and Madumere (2008), that is the case. If a fructose deficiency exists in diabetes, then it is appropriate to supplement it in the diet.
Besides being one of the forms of sugar involved in ordinary energy production, interchangeable with glucose, fructose has some special functions, that aren't as well performed by glucose. It is the main sugar involved in reproduction, in the seminal fluid and intrauterine fluid, and in the developing fetus. After these crucial stages of life are past, glucose becomes the primary molecular source of energy, except when the system is under stress. It has been suggested (Jauniaux, et al., 2005) that the predominance of fructose rather than glucose in the embryo's environment helps to maintain ATP and the oxidative state (cellular redox potential) during development in the low-oxygen environment. The placenta turns glucose from the mother's blood into fructose, and the fructose in the mother's blood can pass through into the fetus, and although glucose can move back from the fetus into the mother's blood, fructose is unable to move in that direction, so a high concentration is maintained in the fluids around the fetus.
The control of the redox potential is sometimes called the "redox signalling system," since it coherently affects all processes and conditions in the cell, including pH and hydrophobicity. For example, when a cell prepares to divide, the balance shifts strongly away from the oxidative condition, with increases in the ratios of NADH to NAD+, of GSH to GSSG, and of lactate to pyruvate. These same shifts occur during most kinds of stress.
In natural stress, decreased availability of oxygen or nutrients is often the key problem, and many poisons can produce similar interference with energy production, for example cyanide or carbon monoxide, which block the use of oxygen, or ethanol, which inhibits the oxidation of sugars, fats, and amino acids (Shelmet, et al., 1988).
When oxygen isn't constantly removing electrons from cells (being chemically reduced by them) those electrons will react elsewhere, creating free radicals (including activated oxygen) and reduced iron, that will create inappropriate chemical reactions (Niknahad, et al., 1995; MacAllister, et al., 2011).
Stresses and poisons of many different types, interfering with the normal flow of electrons to oxygen, produce large amounts of free radicals, which can spread structural and chemical damage, involving all systems of the cell. Ethyl alcohol is a common potentially toxic substance that can have this effect, causing oxidative damage by allowing an excess of electrons to accumulate in the cell, shifting the cells' balance away from the stable oxidized state.
Fructose has been known for many years to accelerate the oxidation of ethanol (by about 80%). Oxygen consumption in the presence of ethanol is increased by fructose more than by glucose (Thieden and Lundquist, 1967). Besides removing the alcohol from the body more quickly, it prevents the oxidative damage, by maintaining or restoring the cell's redox balance, the relatively oxidized state of the NADH/NAD+, lactate/pyruvate, and GSH/GSSH systems. Although glucose has this stabilizing, pro-oxidative function in many situations, this is a general feature of fructose, sometimes allowing it to have the opposite effect of glucose on the cell's redox state. It seems to be largely this generalized shift of the cell's redox state towards oxidation that is behind the ability of a small amount of fructose to catalyze the more rapid oxidation of a large amount of glucose.
Besides protecting against the reductive stresses, fructose can also protect against the oxidative stress of increased hydrogen peroxide (Spasojevic, et al., 2009). Its metabolite, fructose 1,6-bisphosphate, is even more effective as an antioxidant.
Keeping the metabolic rate high has many benefits, including the rapid renewal of cells and their components, such as cholesterol and other lipids, and proteins, which are always susceptible to damage from oxidants, but the high metabolic rate also tends to keep the redox system in the proper balance, reducing the rate of oxidative damage.
Endotoxin absorbed from the intestine is one of the ubiquitous stresses that tends to cause free radical damage. Fructose, probably more than glucose, is protective against damage from endotoxin.
Many stressors cause capillary leakage, allowing albumin and other blood components to enter extracellular spaces or to be lost in the urine, and this is a feature of diabetes, obesity, and a variety of inflammatory and degenerative diseases including Alzheimer's disease (Szekanecz and Koch, 2008; Ujiie, et al., 2003). Although the mechanism isn't understood, fructose supports capillary integrity; fructose feeding for 4 and 8 weeks caused a 56% and 51% reduction in capillary leakage, respectively (Chakir, et al., 1998; Plante, et al., 2003).
The ability of the mitochondria to oxidize pyruvic acid and glucose is characteristically lost to some degree in cancer. When this oxidation fails, the disturbed redox balance of the cell will usually lead to the cell's death, but if it can survive, this balance favors growth and cell division, rather than differentiated function. This was Otto Warburg's discovery, that was rejected by official medicine for 75 years.
Cancer researchers have become interested in this enzyme system that controls the oxidation of pyruvic acid (and thus sugar) by the mitochondria, since these enzymes are crucially defective in cancer cells (and also in diabetes). The chemical DCA, dichloroacetate, is effective against a variety of cancers, and it acts by reactivating the enzymes that oxidize pyruvic acid. Thyroid hormone, insulin, and fructose also activate these enzymes. These are the enzymes that are inactivated by excessive exposure to fatty acids, and that are involved in the progressive replacement of sugar oxidation by fat oxidation, during stress and aging, and in degenerative diseases; for example, a process that inactivates the energy-producing pyruvate dehydrogenase in Alzheimer's disease has been identified (Ishiguro, 1998). Niacinamide, by lowering free fatty acids and regulating the redox system, supporting sugar oxidation, is useful in the whole spectrum of metabolic degenerative diseases.
A few times in the last 80 years, people (starting with Nasonov) have recognized that the hydrophobicity of a cell changes with its degree of excitation, and with its energy level. Recently, even in non-living physical-chemical systems, hydrophobicity and redox potential have been seen to vary together and to influence each other. Recent work shows how the oxidation of fatty acids contributes to the dissolution of mitochondria (Macchioni, et al., 2010). At first glance it might seem odd that the presence of fatty material could reduce the "fat loving" (lipophilic, equivalent to hydrophobic) property of a cell, but the fat used as fuel is in the form of fatty acids, which are soap-like, and spontaneously introduce "wetness" into the relatively water-resistant cell substance. The presence of fatty acids, impairing the last oxidative stage of respiration, increases the tendency of the mitochondrion to release its cytochrome c into the cell in a reduced form, leading to the apoptotic death of the cell. The oxidized form of the cytochrome is more hydrophobic, and stable.
Burr didn't understand that it was his rats' high sugar diet, freed of the anti-oxidative unsaturated fatty acids, that caused their extremely high metabolic rate, but since that time many experiments have made it clear that it is specifically the fructose component of sucrose that is protective against the antimetabolic fats.
Although Brown, et al., weren't focusing on the biological effects of sugar, their results are important in the history of sugar research because their work was done before the culture had been influenced by the development of the lipid theory of heart disease, and the later idea that fructose is responsible for increasing the blood lipids.
In 1963 and 1964, experiments (Carroll, 1964) showed that the effects of glucose and fructose were radically affected by the type of fat in the diet. Although 0.6% of calories as polyunsaturated fat prevents the appearance of the Mead acid (which is considered to indicate a deficiency of essential fats) the "high fructose" diets consistently add 10% or more corn oil or other highly unsaturated fat to the diet. These large quantities of PUFA aren't necessary to prevent a deficiency, but they are needed to obscure the beneficial effects of fructose.
Many studies have found that sucrose is less fattening than starch or glucose, that is, that more calories can be consumed without gaining weight. During exercise, the addition of fructose to glucose increases the oxidation of carbohydrate by about 50% (Jentjens and Jeukendrup, 2005). In another experiment, rats were fed either sucrose or Coca-Cola and Purina chow, and were allowed to eat as much as they wanted (Bukowiecki, et al, 1983). They consumed 50% more calories without gaining extra weight, relative to the standard diet. Ruzzin, et al. (2005) observed rats given a 10.5% or 35% sucrose solution, or water, and observed that the sucrose increased their energy consumption by about 15% without increasing weight gain. Macor, et al. (1990) found that glucose caused a smaller increase in metabolic rate in obese people than in normal weight people, but that fructose increased their metabolic rate as much as it did that of the normal weight people. Tappy, et al. (1993) saw a similar increase in heat production in obese people, relative to the effect of glucose. Brundin, et al. (1993) compared the effects of glucose and fructose in healthy people, and saw a greater oxygen consumption with fructose, and also an increase in the temperature of the blood, and a greater increase in carbon dioxide production.
These metabolic effects have led several groups to recommend the use of fructose for treating shock, the stress of surgery, or infection (e.g., Adolph, et al., 1995).
The commonly recommended alternative to sugar in the diet is starch, but many studies show that it produces all of the effects that are commonly ascribed to sucrose and fructose, for example hyperglycemia (Villaume, et al., 1984) and increased weight gain. The addition of fructose to glucose "can markedly reduce hyperglycemia during intraportal glucose infusion by increasing net hepatic glucose uptake even when insulin secretion is compromised" (Shiota, et al., 2005). "Fructose appears most effective in those normal individuals who have the poorest glucose tolerance" (Moore, et al., 2000).
Lipid peroxidation is involved in the degenerative diseases, and many publications argue that fructose increases it, despite the fact that it can increase the production of uric acid, which is a major component of our endogenous antioxidant system (e.g., Waring, et al., 2003). When rats were fed for 8 weeks on a diet with 18% fructose and 11% saturated fatty acids, the content of polyunsatured fats in the blood decreased, as they had in the Brown, et al., experiment, and their total antioxidant status was increased (Girard, et al., 2005). When stroke-prone spontaneously hypertensive rats were given 60% fructose, superoxide dismutase in their liver was increased, and the authors suggest that this "may constitute an early protective mechanism" (Brosnan and Carkner, 2008). When people were given a 300 calorie drink containing glucose, or fructose, or orange juice, those receiving the glucose had a large increase in oxidative and inflammatory stress (reactive oxygen species, and NF-kappaB binding), and those changes were absent in those receiving the fructose or orange juice (Ghanim, et al., 2007).
One of the observations in Brown, et al., was that the level of phosphate in the serum decreased during the experimental diet. Several later studies show that fructose increases the excretion of phosphate in the urine, while decreasing the level in the serum. However, a common opinion is that it's only the phosphorylation of fructose, increasing the amount in cells, that causes the decrease in the serum; that could account for the momentary drop in serum phosphate during a fructose load, but--since there is only so much phosphate that can be bound to intracellular fructose--it can't account for the chronic depression of the serum phosphate on a continuing diet of fructose or sucrose.
There are many reasons to think that a slight reduction of serum phosphate would be beneficial. It has been suggested that eating fruit is protective against prostate cancer, by lowering serum phosphate (Kapur, 2000). The aging suppressing gene discovered in 1997, named after the Greek life-promoting goddess Klotho, suppresses the reabsorption of phosphate by the kidney (which is also a function of the parathyroid hormone), and inhibits the formation of the activated form of vitamin D, opposing the effect of the parathyroid hormone. In the absence of the gene, serum phosphate is high, and the animal ages and dies prematurely. In humans, in recent years a very close association has been has been documented between increased phosphate levels, within the normal range, and increased risk of cardiovascular disease. Serum phosphate is increased in people with osteoporosis (Gallagher, et al., 1980), and various treatments that lower serum phosphate improve bone mineralization, with the retention of calcium phosphate (Ma and Fu, 2010; Batista, et al., 2010; Kelly, et al., 1967; Parfitt, 1965; Kim, et al., 2003).
At high altitude, or when taking a carbonic anhydrase inhibitor, there is more carbon dioxide in the blood, and the serum phosphate is lower; sucrose and fructose increase the respiratory quotient and carbon dioxide production, and this is probably a factor in lowering the serum phosphate.
Fructose affects the body's ability to retain other nutrients, including magnesium, copper, calcium, and other minerals. Comparing diets with 20% of the calories from fructose or from cornstarch, Holbrook, et al. (1989) concluded "The results indicate that dietary fructose enhances mineral balance." Ordinarily, things (such as thyroid and vitamin D) which improve the retention of magnesium and other nutrients are considered good, but the fructose mythology allows researchers to conclude, after finding an increased magnesium balance, with either 4% or 20% of energy from fructose (compared to cornstarch, bread, and rice), "that dietary fructose adversely affects macromineral homeostasis in humans." (Milne and Nielsen, 2000).
Another study compared the effects of a diet with plain water, or water containing 13% glucose, or sucrose, or fructose, or high fructose corn syrup on the properties of rats' bones: Bone mineral density and mineral content, and bone strength, and mineral balance. The largest differences were between animals drinking the glucose and the fructose solutions. The rats getting the glucose had reduced phosphorus in their bones, and more calcium in their urine, than the rats that got fructose. "The results suggested that glucose rather than fructose exerted more deleterious effects on mineral balance and bone" (Tsanzi, et al., 2008).
An older experiment compared two groups with an otherwise well balanced diet, lacking vitamin D, containing either 68% starch or 68% sucrose. A third group got the starch diet, but with added vitamin D. The rats on the vitamin D deficient starch diet had very low levels of calcium in their blood, and the calcium content of their bones was low, exactly what is expected with the vitamin D deficiency. However, the rats on the sucrose diet, also vitamin D deficient, had normal levels of calcium in their blood. The sucrose, unlike the starch, maintained claim homeostasis. A radioactive calcium tracer showed normal uptake by the bone, and also apparently normal bone development, although their bones were lighter than those receiving vitamin D.
People have told me that when they looked for articles on fructose in PubMed they couldn't find anything except articles about its bad effects. There are two reasons for that. PubMed, like the earlier Index Medicus, represents the material in the National Library of Medicine, and is a medical, rather than a scientific, database, and there is a large amount of important research that it ignores. And because of the authoritarian and conformist nature of the medical profession, when a researcher observes something that is contrary to majority opinion, the title of the publication is unlikely to focus on that. In too many articles in medical journals, the title and conclusions positively misrepresent the data reported in the article.
When the idea of "glycemic index" was being popularized by dietitians, it was already known that starch, consisting of chains of glucose molecules, had a much higher index than fructose and sucrose. The more rapid appearance of glucose in the blood stimulates more insulin, and insulin stimulates fat synthesis, when there is more glucose than can be oxidized immediately. If starch or glucose is eaten at the same time as polyunsaturated fats, which inhibit its oxidation, it will produce more fat. Many animal experiments show this, even when they are intending to show the dangers of fructose and sucrose.
For example (Thresher, et al., 2000), rats were fed diets with 68% carbohydrate, 12% fat (corn oil), and 20% protein. In one group the carbohydrate was starch (cornstarch and maltodextrin, with a glucose equivalence of 10%), and in other groups it was either 68% sucrose, or 34% fructose and 34% glucose, or 34% fructose and 34% starch. (An interesting oddity, fasting triglycerides were highest in the fructose+starch group.)
The weight of their fat pads (epididymal, retroperitoneal, and mesenteric) was greatest in the fructose+starch group, and least in the sucrose group. The starch group's fat was intermediate in weight between those of the sucrose and the fructose+glucose groups.
At the beginning of the experimental diet, the average weight of the animals was 213.1 grams. After five weeks, the animals in the fructose+glucose group gained 164 grams, those in the sucrose group gained 177 grams, and those in the starch group gained 199.2 grams. The animals ate as much of the diet as they wanted, and those in the sucrose group ate the least.
The purpose of their study was to see whether fructose causes "glucose intolerance" and "insulin resistance." Since insulin stimulates appetite (Chance, et al, 1986; Dulloo and Girardier, 1989; Czech, 1988; DiBattista, 1983; Sonoda, 1983; Godbole and York, 1978), and fat synthesis, the reduced food consumption and reduced weight gain show that fructose was protecting against these potentially harmful effects of insulin.
Much of the current concern about the dangers of fructose is focussed on the cornstarch-derived high fructose corn syrup, HFCS. Many studies assume that its composition is nearly all fructose and glucose. However, Wahjudi, et al. (2010) analyzed samples of it before and after hydrolyzing it in acid, to break down other carbohydrates present in it. They found that the carbohydrate content was several times higher than the listed values. "The underestimation of carbohydrate content in beverages may be a contributing factor in the development of obesity in children," and it's especially interesting that so much of it is present in the form of starch-like materials.
Many people are claiming that fructose consumption has increased greatly in the last 30 or 40 years, and that this is responsible for the epidemic of obesity and diabetes. According to the USDA Economic Research Service, the 2007 calorie consumption as flour and cereal products increased 3% from 1970, while added sugar calories decreased 1%. Calories from meats, eggs, and nuts decreased 4%, from dairy foods decreased 3%, and calories from added fats increased 7%. The percentage of calories from fruits and vegetables stayed the same. The average person consumed 603 calories per day more in 2007 than in 1970. If changes in the national diet are responsible for the increase of obesity, diabetes, and the diseases associated with them, then it would seem that the increased consumption of fat and starch is responsible, and that would be consistent with the known effects of starches and polyunsaturated fats.
In monkeys living in the wild, when their diet is mainly fruit, their cortisol is low, and it rises when they eat a diet with less sugar (Behie, et al., 2010). Sucrose consumption lowers ACTH, the main pituitary stress hormone (Klement, et al., 2009; Ulrich-Lai, et al., 2007), and stress promotes increased sugar and fat consumption (Pecoraro, et al., 2004). If animals' adrenal glands are removed, so that they lack the adrenal steroids, they choose to consume more sucrose (Laugero, et al., 2001). Stress seems to be perceived as a need for sugar. In the absence of sucrose, satisfying this need with starch and fat is more likely to lead to obesity.
The glucocorticoid hormones inhibit the metabolism of sugar. Sugar is essential for brain development and maintenance. The effects of environmental stimulation and deprivation-stress can be detected in the thickness of the brain cortex in as little as 4 days in growing rats (Diamond, et al., 1976). These effects can persist through a lifetime, and are even passed on transgenerationally. Experimental evidence shows that polyunsaturated (omega-3) fats retard fetal brain development, and that sugar promotes it. These facts argue against some of the currently popular ideas of the evolution of the human brain based on ancestral diets of fish or meat, which only matters as far as those anthropological theories are used to argue against fruits and other sugars in the present diet.
Honey has been used therapeutically for thousands of years, and recently there has been some research documenting a variety of uses, including treatment of ulcers and colitis, and other inflammatory conditions. Obesity increases mediators of inflammation, including the C-reactive protein (CRP) and homocysteine. Honey, which contains free fructose and free glucose, lowers CRP and homocysteine, as well as triglycerides, glucose, and cholesterol, while it increased insulin more than sucrose did (Al-Waili, 2004). Hypoglycemia intensifies inflammatory reactions, and insulin can reduce inflammation if sugar is available. Obesity, like diabetes, seems to involve a cellular energy deficiency, resulting from the inability to metabolize sugar.
Sucrose (and sometimes honey) is increasingly being used to reduce pain in newborns, for minor things such as injections (Guala, et al., 2001; Okan, et al., 2007; Anand, et al., 2005; Schoen and Fischell, 1991). It's also effective in adults. It acts by influencing a variety of nerve systems, and also reduces stress. Insulin is probably involved in sugar analgesia, as it is in inflammation, since it promotes entry of endorphins into the brain (Witt, et al., 2000).
An extracellular phosphorylated fructose metabolite, diphosphoglycerate, has an essential regulatory effect in the blood; another fructose metabolite, fructose diphosphate, can reduce mast cell histamine release and protect against oxidative and hypoxic injury and endotoxic shock, and it reduces the expression of the inflammation mediators TNF-alpha, IL-6, nitric oxide synthase, and the activation of NF-kappaB, among other protective effects, and its therapeutic value is known, but its relation to dietary sugars hasn't been investigated.
A daily diet that includes two quarts of milk and a quart of orange juice provides enough fructose and other sugars for general resistance to stress, but larger amounts of fruit juice, honey, or other sugars can protect against increased stress, and can reverse some of the established degenerative conditions.
Refined granulated sugar is extremely pure, but it lacks all of the essential nutrients, so it should be considered as a temporary therapeutic material, or as an occasional substitute when good fruit isn't available, or when available honey is allergenic.
 
  • +1
  • JFL
Reactions: Iblamejordan, Deleted member 15827, LooksDeficiency and 6 others
Glucose and sucrose for diabetes

Diabetes has been known since ancient times as a wasting disease in which sugar was lost in the urine, but more recently the name has been used to describe the presence of more than the normal amount of glucose in the blood, even in the absence of glucose in the urine. Some of the medical ideas regarding the original form of the condition have been applied to the newer form.
Cultural "paradigms" or ideologies are so convenient that people often don't bother to doubt them, and they are sometimes so rigorously enforced that people learn to keep their doubts to themselves. Public concern about diabetes has been growing for decades, but despite the introduction of insulin and other drugs to treat it, and massive campaigns to "improve" eating habits, mortality from diabetes has been increasing during the last 100 years. Diabetes ("type 1") has been increasing even among children (Barat, et al., 2008).

A basic meaning of homeopathic medicine is the support of the organism's ability to heal itself; the essence of allopathy is that the physician fights "a disease" to cure the patient, e.g., by cutting out tumors or killing germs.

Confidence in the organism's essential rationality led the doctors with a homeopathic orientation to see a fever as part of a recuperative process, while their allopathic opponents sometimes saw fever as the essence of the sickness to be cured. Homeopaths concentrated on the nature of the patient; allopaths concentrated on a disease entity in itself, and were likely to ignore the patient's idiosyncrasies and preferences.

Diabetes was named for the excessive urination it causes, and for the sugar in the urine. It was called the sugar disease, and physicians were taught that sugar was the problem. Patients were ordered to avoid sweet foods, and in hospitals they were sometimes locked up to keep them from finding sweets. The practice was derived from ideology, not from any evidence that the treatment helped.

In 1857, M. Piorry in Paris and William Budd in Bristol, England, reasoned that if a patient was losing a pound of sugar every day in 10 liters of urine, and was losing weight very rapidly, and had an intense craving for sugar, it would be reasonable to replace some of the lost sugar, simply because the quick weight loss of diabetes invariably led to death. Keeping patients from eating what they craved seemed both cruel and futile.

After Budd's detailed reports of a woman's progressive recovery over a period of several weeks when he prescribed 8 ounces of sugar every day, along with a normal diet including beef and beef broth, a London physician, Thomas Williams, wrote sarcastically about Budd's metaphysical ideas, and reported his own trial of a diet that he described as similar to Budd's. But after two or three days he decided his patients were getting worse, and stopped the experiment.

Williams' publication was presented as a scientific refutation of Budd's deluded homeopathic ideas, but Budd hadn't explained his experiment as anything more than an attempt to slow the patient's death from wasting which was sure to be the result of losing so much sugar in the urine. The following year Budd described another patient, a young man who had become too weak to work and who was losing weight at an extreme rate. Budd's prescription included 8 ounces of white sugar and 4 ounces of honey every day, and again, instead of increasing the amount of glucose in the urine, the amount decreased quickly as the patient began eating almost as much sugar as was being lost initially, and then as the loss of sugar in the urine decreased, the patient gained weight and recovered his strength.

Drs. Budd and Piorry described patients recovering from an incurable disease, and that has usually been enough to make the medical profession antagonistic. Even when a physician has himself diagnosed diabetes and told a patient that it would be necessary to inject insulin for the rest of his life, if that patient recovers by changing his diet, the physician will typically say that the diagnosis was wrong, because diabetes is incurable.

Twenty-five years ago, some rabbits were made diabetic with a poison that killed their insulin-secreting pancreatic beta-cells, and when some of them recovered from the diabetes after being given supplemental DHEA, it was found that their beta-cells had regenerated. The more recent interest in stem cells has led several research groups to acknowledge that in animals the insulin-producing cells are able to regenerate.

It is now conceivable that there will be an effort to understand the factors that damage the beta-cells, and the factors that allow them to regenerate. The observations of Budd and Piorry would be a good place to start such a reconsideration.

For many years, physicians have been taught that diabetes is either "genetic" or possibly caused by a viral infection, that might trigger an "autoimmune reaction," but the study of cellular respiration and energy metabolism and endocrinology has provided more convincing explanations. The antibodies that are found in the "autoimmune" conditions are evidence of tissue damage, but the damage may have been done by metabolic toxins, with the immune system's involvement being primarily the removal of defective cells.

In the 1940s, Bernardo Houssay found that coconut oil protected animals from poison-induced diabetes, while a lard-based diet failed to protect them. Later, glucose itself was found to protect the pancreatic beta-cells from poisons.

In 1963, P.J. Randle clearly described the inhibition of glucose oxidation by free fatty acids. Later, when lipid emulsions came into use for intravenous feeding in hospitals, it was found that they blocked glucose oxidation, lowered the metabolic rate, suppressed immunity, and increased lipid peroxidation and oxidative stress.
Estrogen and stress are both known to create some of the conditions of diabetes, while increasing fat oxidation and inhibiting glucose oxidation. Emotional stress, overwork, trauma, and infections have been known to initiate diabetes. Estrogen increases free fatty acids and decreases glycogen storage, and when birth control pills were becoming popular, some researchers warned that they might cause diabetes. But the food oil industry and the estrogen industry were satisfied with the medical doctrine that diabetes was caused by eating too much sugar.
If the essence of diabetes is the presence of too much sugar, then it seems reasonable to argue that it is the excess sugar that's responsible for the suffering and death associated with the disease, otherwise, how would the prohibition of sugar in the diet be justified? In fact, the argument is made (e.g., Muggeo, 1998) that it is the hyperglycemia that causes problems such as hypertension, kidney failure, heart failure, neuropathy, blindness, dementia, and gangrene.

As information about the many physiological and biochemical events associated with diabetes has accumulated, the basic doctrine that "sugar causes diabetes" has extended itself to whatever the topic of discussion is: "Glucose causes" the death of beta-cells, glucose causes blood vessels to become leaky, glucose causes cells to be unable to absorb glucose, glucose causes the formation of free radicals, glucose impairs immunity and wound healing, but causes inflammation while preventing the "respiratory burst" in which free radicals are produced by cells that cause inflammation, it disturbs enzyme functions, impairs nerve conduction and muscle strength, etc., and it is also addictive, causing people to irrationally seek the very material that is poisoning them.

Tens of thousands of publications describe the pathogenic effects of sugar. To prove their point, they grow cells in a culture dish, and find that when they are exposed to excess glucose, often 5 times the normal amount, they deteriorate. In the artificial conditions of cell culture, the oversupply of glucose causes lactic acid to accumulate, leading to toxic effects. But in the organism, the hyperglycemia is compensating for a sensed deficiency of glucose, a need for more energy.

If diabetes means that cells can't absorb or metabolize glucose, then any cellular function that requires glucose will be impaired, despite the presence of glucose in the blood. It is the intracellular absence of glucose which is problematic, rather than its extracellular excess.
Neuroglycopenia (or neuroglucopenia) or intracellular glycopenia refers to the deficit of glucose in cells. When the brain senses a lack of glucose, nerves are activated to increase the amount of glucose in the blood, to correct the problem. As long as the brain senses the need for more glucose, the regulatory systems will make the adjustments to the blood glucose level.

The antagonism between fat and sugar that Randle described can involve the suppression of sugar oxidation when the concentration of fats in the bloodstream is increased by eating fatty food, or by releasing fats from the tissues by lipolysis, but it can also involve the suppression of fat oxidation by inhibiting the release of fatty acids from the tissues, when a sufficient amount of sugar is eaten.

When a normal person, or even a "type 2 diabetic," is given a large dose of sugar, there is a suppression of lipolysis, and the concentration of free fatty acids in the bloodstream decreases, though the suppression is weaker in the diabetic (Soriguer, et al., 2008). Insulin, released by the sugar, inhibits lipolysis, reducing the supply of fats to the respiring cells.

Free fatty acids suppress mitochondrial respiration (Kamikawa and Yamazaki, 1981), leading to increased glycolysis (producing lactic acid) to maintain cellular energy. The suppression of mitochondrial respiration increases the production of toxic free radicals, and the decreased carbon dioxide makes the proteins more susceptible to attack by free radicals. The lactate produced under the influence of excessive fat metabolism stimulates the release of endorphins, which are lipolytic, releasing more free fatty acids from the tissues. Acting through cytokines such as interleukin-6, lactate shifts the balance toward the catabolic hormones, leading to tissue wasting.

Lactic acid itself, and the longer chain fatty acids, inhibit the regulatory enzyme pyruvate dehydrogenase (which is activated by insulin), reducing the oxidative production of energy. Drugs to activate this enzyme are being studied by the pharmaceutical industry as treatments for diabetes and cancer (for example, DCA, dichloroacetate).

Oxidative damage of proteins is often described as glycation or glycosylation, but it really consists of many addition and crosslinking reactions, most often onto, or between, lysine groups. Carbon dioxide normally associates with lysine groups, so the destructive reactions are favored when carbon dioxide is displaced by lactic acid. The reactive fragments of polyunsaturated fatty acids are much more often the source of the protein-damaging radicals than the carbohydrates are.

The importance of the fats in causing type-2 diabetes is coming to be accepted, for example Li, et al., recently (2008) said "The cellular link between fatty acids and ROS (reactive oxygen species) is essentially the mitochondrion, a key organelle for the control of insulin secretion. Mitochondria are the main source of ROS and are also the primary target of oxidative attacks."
But much earlier (Wright, et al., 1988) it had been demonstrated that a deficiency of the "essential fatty acids" prevents toxin-induced diabetes and greatly increases resistance to inflammation (Lefkowith, et al., 1990). The lack of those so-called "essential fatty acids" also prevents autoimmune diabetes in a strain of diabetic mice (Benhamou, et al., 1995),

Suppressing fatty acid oxidation improves the contraction of the heart muscle and increases the efficiency of oxygen use (Chandler, et al., 2003). Various drugs are being considered for that purpose, but niacinamide is already being used to improve heart function, since it lowers the concentration of free fatty acids.

The antimetabolic and toxic effects of the polyunsaturated fatty acids can account for the "insulin resistance" that characterizes type-2 diabetes, but similar actions in the pancreatic beta-cells can impair or kill those cells, creating a deficiency of insulin, resembling type-1 diabetes.
The suppression of mitochondrial respiration causes increased free radical damage, and the presence of polyunsaturated fatty acids in the suppressed cell increases the rate of fat decomposition and production of toxins.

Increasing the rate of respiration by replacing the fats with glucose reduces the availability of electrons that can trigger lipid peroxidation and produce toxic free radicals, and the shift of fuel also increases the amount of carbon dioxide produced, which can protect the protein amino groups such as lysine from glycation and lipoxidation.

While it's clear that it is the excessive oxidation of fat that damages cells in the "diabetic" state in which cells aren't able to use glucose, it's important to look at some of the situations in which so many researchers are blaming problems on hyperglycemia.

Important problems in diabetes are slow wound healing, excessive permeability or leakiness of blood vessels which allows molecules such as albumin to be extravasated, and the impaired function and survival of pancreatic beta-cells.

During the healing of a wound in a diabetic individual, the local concentration of glucose decreases and then entirely disappears, as healing stops. Applying glucose and insulin topically to the wound, it heals quickly. The very old practice of treating deep wounds with honey or granulated sugar has been studied in controlled situations, including the treatment of diabetic ulcers, infected deep wounds following heart surgery, and wounds of lepers. The treatment eradicates bacterial infections better than some antiseptics, and accelerates healing without scarring, or with minimal scarring. The sugar regulates the communication between cells, and optimizes the synthesis of collagen and extracellular matrix.

An excess of insulin, causing hypoglycemia, can cause blood vessels, for example in the brain and kidneys, to become leaky, and this has been claimed to be an effect of insulin itself. However, the same leakiness can be produced by an analog of glucose that can't be metabolized, so that intracellular glycopenia is produced. The harmful effect that has been ascribed to excessive insulin can be prevented by maintaining an adequate supply of glucose (Uezu and Murakami, 1993), showing that it is the lack of glucose, rather than the excess insulin, that causes the vascular malfunction. Fructose also reduces the leakiness of blood vessels (Plante, et al., 2003). Many of the complications of diabetes are caused by increased vascular leakiness (Simard, et al., 2002).

Sugar can protect the beta-cells from the free fatty acids, apparently in the same ways that it protects the cells of blood vessels, restoring metabolic energy and preventing damage to the mitochondria. Glucose suppresses superoxide formation in beta-cells (Martens, et al., 2005) and apparently in other cells including brain cells. (Isaev, et al., 2008).

The beta-cell protecting effect of glucose is supported by bicarbonate and sodium. Sodium activates cells to produce carbon dioxide, allowing them to regulate calcium, preventing overstimulation and death. For a given amount of energy released, the oxidation of glucose produces more carbon dioxide and uses less oxygen than the oxidation of fatty acids.

The toxic excess of intracellular calcium that damages the insulin-secreting cells in the relative absence of carbon dioxide is analogous to the increased excitation of nerves and muscles that can be produced by hyperventilation.

In every type of tissue, it is the failure to oxidize glucose that produces oxidative stress and cellular damage. Even feeding enough sucrose to cause fat deposition in the liver can protect the liver from oxidative stress (Spolarics and Meyenhofer, 2000), possibly by mechanisms such as those involved in the treatment of alcoholic liver disease with saturated fats.

The active thyroid hormone, T3, protects the heart by supporting the oxidation of glucose (Liu, et al., 1998). The amount of T3 produced by the liver depends mainly on the amount of glucose available.

Animals that have been made diabetic with relatively low doses of the poison streptozotocin can recover functional beta-cells spontaneously, and the rate of recovery is higher in pregnant animals (Hartman, et al., 1989). Pregnancy stabilizes blood sugar at a higher level, and progesterone favors the oxidation of glucose rather than fats.

A recent study suggests that recovery of the pancreas can be very fast. A little glucose was infused for 4 days into rats, keeping the blood glucose level normal, and the mass of beta-cells was found to have increased 2.5 times. Cell division wasn't increased, so apparently the additional glucose was preventing the death of beta-cells, or stimulating the conversion of another type of cell to become insulin-secreting beta-cells (Jetton, et al., 2008).

That study is very important in relation to stem cells in general, because it either means that glandular cells are turning over ("streaming") at a much higher rate than currently recognized in biology and medicine, or it means that (when blood sugar is adequate) stimulated cells are able to recruit neighboring cells to participate in their specialized function. Either way, it shows the great importance of environmental factors in regulating our anatomy and physiology.

"Diabetologists" don't regularly measure their patients' insulin, but they usually make the assumption that insulin is the main factor regulating blood sugar. In one study, it was found that the insulin molecule itself, immunoreactive insulin, accounted for only about 8% of the serum's insulin-like action. The authors of that study believed that potassium was the main other factor in the serum that promoted the disposition of glucose. Since potassium and glucose are both always present in the blood, their effects on each other have usually been ignored.

Cellular activation (by electrical, nervous, chemical, or mechanical stimulation) causes glucose to be absorbed and oxidized, even in the absence of insulin and in otherwise insulin-resistant individuals. I think this local interaction between the need for energy and the production of energy predominates in good health, with insulin and other hormones facilitating the process in times of stress. A variety of local tissue regulators, including GABA and glutamate, probably participate in these interactions, in the brain, endocrine glands, muscles, and other tissues, and are probably involved in the relaxing and analgesic actions of the sugars.

The GABA system (GABA is highly concentrated in the beta-cells) is involved in regulating blood sugar, inhibiting the release of glucagon when glucose isn't needed, and apparently allowing the beta cells to discriminate between amino acids and glucose (Gu, et al., 1993) and acting as a survival and growth factor for neighboring cells (Ligon, et al., 2007).

The damaged beta-cells lose the enzyme (glutamate dehydrogenase) that makes GABA, and their ratio of linoleic acid to saturated and monounsaturated fat increases, a change that corresponds to a decreased metabolism of glucose.

The free intracellular calcium that can become toxic is normally bound safely by well-energized mitochondria, and in the bloodstream it is kept safely complexed with carbon dioxide. The thyroid hormone, producing carbon dioxide, helps to sustain the level of ionized calcium (Lindblom, et al., 2001). In a vitamin D deficiency, or a calcium deficiency, the parathyroid hormone increases, and this hormone can contribute to many inflammatory and degenerative processes, including diabetes. Consuming enough calcium and vitamin D to keep the parathyroid hormone suppressed is important to protect against the degenerative conditions.

When animals were fed an otherwise balanced diet lacking vitamin D, with the addition of either 68% sucrose or 68% starch, the bones of those on the starch diet failed to develop normally, as would be expected with a vitamin D deficiency, and their serum calcium was low. However, the bones of those on the diet with sucrose developed properly, and didn't show evidence of being calcium deficient, though they weren't quite as heavy as those that also received an adequate amount of vitamin D (Artus, 1975). This study suggests that the famous dietetic emphasis on the "complex carbohydrates," i.e., starches, has made an important contribution to the prevalence of osteoporosis, as well as obesity and other degeneration conditions.

Both vitamin D and vitamin K, another important calcium-regulating nutrient, are now known to prevent diabetes. Both of these vitamins require carbon dioxide for disposing of calcium properly, preventing its toxicity. When carbon dioxide is inadequate, for example from simple hyperventilation or from hypothyroidism, calcium is allowed to enter cells, causing inappropriate excitation, sometimes followed by calcification.

Keeping an optimal level of carbon dioxide (for example, when adapted to high altitude) causes calcium to be controlled, resulting in lowered parathyroid hormone, an effect similar to supplementing with calcium, vitamin D, and vitamin K. (E.g., Nicolaidou, et al, 2006.) Glycine, like carbon dioxide, protects proteins against oxidative damage (Lezcano, et al., 2006), so including gelatin (very rich in glycine) in the diet is probably protective.

The contribution of PTH to inflammation and degeneration is just being acknowledged (e.g., Kuwabara, 2008), but the mechanism undoubtedly involves the fact that it is lipolytic, increasing the concentration of free fatty acids that suppress metabolism and interfere with the use of glucose.

When we talk about increasing the metabolic rate, and the benefits it produces, we are comparing the rate of metabolism in the presence of thyroid, sugar, salt, and adequate protein to the "normal" diet, containing smaller amounts of those "stimulating" substances. It would be more accurate if we would speak of the suppressive nature of the habitual diet, in relation to the more optimal diet, which provides more energy for work and adaptation, while minimizing the toxic effects of free radicals.

Feeding animals a normal diet with the addition of Coca-Cola, or with a similar amount of sucrose, has been found to let them increase their calorie intake by 50% without increasing their weight gain (Bukowiecki, et al., 1983). Although plain sucrose can alleviate the metabolic suppression of an average diet, the effect of sugars in the diet is much more likely to be healthful in the long run when they are associated with an abundance of minerals, as in milk and fruit, which provide potassium and calcium and other protective nutrients.

Avoiding the starches such as cereals and beans, and using fruits as a major part of the diet helps to minimize the effects of the polyunsaturated fats.

Celiac disease or gluten sensitivity is associated with diabetes and hypothyroidism. There is a cross reaction between the gluten protein molecule and an enzyme which is expressed under the influence of estrogen. This is another reason for simply avoiding cereal products.

Brewers' yeast has been used traditionally to correct diabetes, and its high content of niacin and other B vitamins and potassium might account for its beneficial effects. However, eating a large quantity of it is likely to cause gas, so some people prefer to extract the soluble nutrients with hot water. Yeast contains a considerable amount of estrogen, and the water extract probably leaves much of that in the insoluble starchy residue. Liver is another rich source of the B vitamins as well as the oily vitamins, but it can suppress thyroid function, so usually one meal a week is enough.

The supplements that most often help to correct diabetes-like conditions are niacinamide, thiamine, thyroid, and progesterone or pregnenolone. Vitamins D and K are clearly protective against developing diabetes, and their effects on many regulatory processes suggest that they would also help to correct existing hyperglycemia.

Drinking coffee seems to be very protective against developing diabetes. Its niacin and magnesium are clearly important, but it is also a rich source of antioxidants, and it helps to maintain normal thyroid and progesterone production. Chocolate is probably protective too, and it is a good source of magnesium and antioxidants.

A recent study (Xia, et al., 2008) showed that inhibition of cholesterol synthesis by beta-cells impairs insulin synthesis, and that replenishing cholesterol restores the insulin secretion. Green tea contains this type of inhibitor, but its use has nevertheless been associated with a reduced risk of diabetes. Caffeine is likely to be the main protective substance in these foods.

Although antioxidants can be protective against diabetes, not all things sold as "antioxidants" are safe; many botannical "antioxidants" are estrogenic. Hundreds of herbal products can lower blood sugar, but many of them are simply toxic, and the reduction of blood glucose can make some problems worse.

The supplements I mention above--including caffeine--have antiinflammatory, antioxidative and energy-promoting effects. Inflammation, interfering with cellular energy production, is probably the essential feature of the things called diabetes.

Aspirin has a very broad spectrum of antiinflammatory actions, and is increasingly being recommended for preventing complications of diabetes. One of the consequences of inflammation is hyperglycemia, and aspirin helps to correct that (Yuan, et al., 2001), while protecting proteins against oxidative damage (Jafarnejad, et al, 2001).

If Dr. Budd's thinking (and results) had been more widely accepted when his publications appeared, thinking about "diabetes" might have led to earlier investigation of the syndromes of stress and tissue wasting, with insulin being identified as just one of many regulatory substances, and a large amount of useless and harmful activity treating hyperglycemia as the enemy, rather than part of an adaptive reaction, might have been avoided.
 
  • +1
Reactions: Deleted member 13511
Glycemia, starch, and sugar in context

============================================

Monosaccharide -- a simple sugar; examples, glucose, fructose, ribose, galactose (galactose is also called cerebrose, brain sugar).

Disaccharide -- two monosaccharides bound together; examples, sucrose, lactose, maltose.

Oligosaccharide -- a short chain of monosaccharides, including disaccharides and slightly longer chains.

Polysaccharide -- example, starch, cellulose, glycogen.

Glycation -- the attachment of a sugar to a protein.

Lipolysis - the liberation of free fatty acids from triglycerides, the neutral form in which fats are stored, bound to glycerine.

============================================

In the 1920s, “diabetes” was thought to be a disease of insulin deficiency. Eventually, measurements of insulin showed that “diabetics” often had normal amounts of insulin, or above-normal amounts. There are now “two kinds of diabetes,” with suggestions that “the disease” will soon be further subdivided.

The degenerative diseases that are associated with hyperglycemia and commonly called diabetes, are only indirectly related to insulin, and as an approach to understanding or treating diabetes, the “glycemic index” of foods is useless. Physiologically, it has no constructive use, and very little meaning.

Insulin is important in the regulation of blood sugar, but its importance has been exaggerated because of the diabetes/insulin industry. Insulin itself has been found to account for only about 8% of the "insulin-like activity" of the blood, with potassium being probably the largest factor. There probably isn't any process in the body that doesn't potentially affect blood sugar.

Glucagon, cortisol, adrenalin, growth hormone and thyroid tend to increase the blood sugar, but it is common to interpret hyperglycemia as "diabetes," without measuring any of these factors. Even when "insulin dependent diabetes" is diagnosed, it isn't customary to measure the insulin to see whether it is actually deficient, before writing a prescription for insulin. People resign themselves to a lifetime of insulin injections, without knowing why their blood sugar is high.

Insulin release is also stimulated by amino acids such as leucine, and insulin stimulates cells to absorb amino acids and to synthesize proteins. Since insulin lowers blood sugar as it disposes of amino acids, eating a large amount of protein without carbohydrate can cause a sharp decrease in blood sugar. This leads to the release of adrenalin and cortisol, which raise the blood sugar. Adrenalin causes fatty acids to be drawn into the blood from fat stores, especially if the liver's glycogen stores are depleted, and cortisol causes tissue protein to be broken down into amino acids, some of which are used in place of carbohydrate. Unsaturated fatty acids, adrenaline, and cortisol cause insulin resistance.

============================================

“Professional opinion” can be propagated about 10,000 times faster than research can evaluate it, or, as C. H. Spurgeon said, "A lie travels round the world while Truth is putting on her boots."

In the 1970s, dietitians began talking about the value of including "complex carbohydrates" in the diet. Many dietitians (all but one of the Registered Dietitians that I knew of) claimed that starches were more slowly absorbed than sugars, and so should be less disruptive to the blood sugar and insulin levels. People were told to eat whole grains and legumes, and to avoid fruit juices.

These recommendations, and their supporting ideology, are still rampant in the culture of the United States, fostered by the U.S. Department of Agriculture and the American Dietetic Association and the American Diabetes Association and innumerable university departments of home economics, dietetics, or nutrition.

Judging by present and past statements of the American Dietetic Association, I think some kind of institutional brain defect might account for their recommendations. Although the dietetic association now feebly acknowledges that sugars don't raise the blood sugar more quickly than starches do, they can't get away from their absurd old recommendations, which were never scientifically justified: “Eat more starches, such as bread, cereal, and starchy vegetables--6 servings a day or more. Start the day with cold (dry) cereal with nonfat/skim milk or a bagel with one teaspoon of jelly/jam. Put starch center stage--pasta with tomato sauce, baked potato with chili, rice and stir-fried beef and vegetables. Add cooked black beans, corn, or garbanzo beans (chickpeas) to salads or casseroles.”

The Dietetic Association's association with General Mills, the breakfast cereal empire, (and Kellog, Nabisco, and many other food industry giants) might have something to do with their starchy opinions. Starch-grain embolisms can cause brain damage, but major money can also make people say stupid things.

In an old experiment, a rat was tube-fed ten grams of corn-starch paste, and then anesthetized. Ten minutes after the massive tube feeding, the professor told the students to find how far the starch had moved along the alimentary canal. No trace of the white paste could be found, demonstrating the speed with which starch can be digested and absorbed. The very rapid rise of blood sugar stimulates massive release of insulin, and rapidly converts much of the carbohydrate into fat.

It was this sort of experiment that led to the concept of "glycemic index," that ranks foods according to their ability to raise the blood sugar. David Jenkins, in 1981, knew enough about the old studies of starch digestion to realize that the dietitians had created a dangerous cult around the “complex carbohydrates,” and he did a series of measurements that showed that starch is more “glycemic” than sucrose. But he simply used the amount of increase in blood glucose during the first two hours after ingesting the food sample, compared to that following ingestion of pure glucose, for the comparison, neglecting the physiologically complex facts, all of the processes involved in causing a certain amount of glucose to be present in the blood during a certain time. (Even the taste of sweetness, without swallowing anything, can stimulate the release of glucagon, which raises blood sugar.)

More important than the physiological vacuity of a simple glycemic measurement was the ideology within which the whole issue developed, namely, the idea that diabetes (conceived as chronic hyperglycemia) is caused by eating too much sugar, i.e., chronic hyperglycemia the illness is caused by the recurrent hyperglycemia of sugar gluttony. The experiments of Bernardo Houssay (1947 Nobel laureate) in the 1940s, in which sugar and coconut oil protected against diabetes, followed by Randle's demonstration of the antagonism between fats and glucose assimilation, and the growing recognition that polyunsaturated fatty acids cause insulin resistance and damage the pancreas, have made it clear that the dietetic obsession with sugar in relation to diabetes has been a dangerous diversion that has retarded the understanding of degenerative metabolic diseases.

Starting with the insulin industry, a culture of diabetes and sugar has been fabulized and expanded and modified as new commercial industries found ways to profit from it. Seed oils, fish oils, breakfast cereals, soybean products, and other things that were never eaten by any animal in millions of years of evolution have become commonplace as “foods,” even as “health foods.”

Although many things condition the rate at which blood sugar rises after eating carbohydrates, and affect the way in which blood glucose is metabolized, making the idea of a “glycemic index” highly misleading, it is true that blood sugar and insulin responses to different foods have some meaningful effects on physiology and health.

Starch and glucose efficiently stimulate insulin secretion, and that accelerates the disposition of glucose, activating its conversion to glycogen and fat, as well as its oxidation. Fructose inhibits the stimulation of insulin by glucose, so this means that eating ordinary sugar, sucrose (a disaccharide, consisting of glucose and fructose), in place of starch, will reduce the tendency to store fat. Eating “complex carbohydrates,” rather than sugars, is a reasonable way to promote obesity. Eating starch, by increasing insulin and lowering the blood sugar, stimulates the appetite, causing a person to eat more, so the effect on fat production becomes much larger than when equal amounts of sugar and starch are eaten. The obesity itself then becomes an additional physiological factor; the fat cells create something analogous to an inflammatory state. There isn't anything wrong with a high carbohydrate diet, and even a high starch diet isn't necessarily incompatible with good health, but when better foods are available they should be used instead of starches. For example, fruits have many advantages over grains, besides the difference between sugar and starch. Bread and pasta consumption are strongly associated with the occurrence of diabetes, fruit consumption has a strong inverse association.

Although pure fructose and sucrose produce less glycemia than glucose and starch do, the different effects of fruits and grains on the health can't be reduced to their effects on blood sugar.

Orange juice and sucrose have a lower glycemic index than starch or whole wheat or white bread, but it is common for dietitians to argue against the use of orange juice, because its index is the same as that of Coca Cola. But, if the glycemic index is very important, to be rational they would have to argue that Coke or orange juice should be substituted for white bread.

After decades of “education” to promote eating starchy foods, obesity is a bigger problem than ever, and more people are dying of diabetes than previously. The age-specific incidence of most cancers is increasing, too, and there is evidence that starch, such as pasta, contributes to breast cancer, and possibly other types of cancer.

The epidemiology would appear to suggest that complex carbohydrates cause diabetes, heart disease, and cancer. If the glycemic index is viewed in terms of the theory that hyperglycemia, by way of “glucotoxicity,” causes the destruction of proteins by glycation, which is seen in diabetes and old age, that might seem simple and obvious.

Fructose 32 22
Lactose 65 46
Honey 83 58
High fructose corn syrup 89 62
Sucrose 92 64
Glucose 137 96
Glucose tablets 146 102
Maltodextrin 150 105
Maltose 150 105
Pineapple juice 66 46
Peach, canned 67 47
Grapefruit juice 69 48
Orange juice 74 52

Barley flour bread 95 67
Wheat bread, high fiber 97 68
Wheat bread, wholemeal flour 99 69
Melba toast 100 70
Wheat bread, white 101 71
Bagel, white 103 72
Kaiser rolls 104 73
Whole-wheat snack bread 105 74
Bread stuffing 106 74
Wheat bread, Wonderwhite 112 78
Wheat bread, gluten free 129 90
French baguette 136 95
Taco shells 97 68
Cornmeal 98 69
Millet 101 71
Rice, Pelde 109 76
Rice, Sunbrown Quick 114 80
Tapioca, boiled with milk 115 81
Rice, Calrose 124 87
Rice, parboiled, low amylose Pelde 124 87
Rice, white, low amylose 126 88
Rice, instant, boiled 6 min 128 90

`
GLYCEMIC LIST White Bread Glucose Based

But there are many reasons to question that theory.

Oxidation of sugar is metabolically efficient in many ways, including sparing oxygen consumption. It produces more carbon dioxide than oxidizing fat does, and carbon dioxide has many protective functions, including increasing Krebs cycle activity and inhibiting toxic damage to proteins. The glycation of proteins occurs under stress, when less carbon dioxide is being produced, and the proteins are normally protected by carbon dioxide.

When sugar (or starch) is turned into fat, the fats will be either saturated, or in the series derived from omega -9 monounsaturated fatty acids. When sugar isn't available in the diet, stored glycogen will provide some glucose (usually for a few hours, up to a day), but as that is depleted, protein will be metabolized to provide sugar. If protein is eaten without carbohydrate, it will stimulate insulin secretion, lowering blood sugar and activating the stress response, leading to the secretion of adrenalin, cortisol, growth hormone, prolactin, and other hormones. The adrenalin will mobilize glycogen from the liver, and (along with other hormones) will mobilize fatty acids, mainly from fat cells. Cortisol will activate the conversion of protein to amino acids, and then to fat and sugar, for use as energy. (If the diet doesn't contain enough protein to maintain the essential organs, especially the heart, lungs, and brain, they are supplied with protein from the skeletal muscles. Because of the amino acid composition of the muscle proteins, their destruction stimulates the formation of additional cortisol, to accelerate the movement of amino acids from the less important tissues to the essential ones.)

The diabetic condition is similar in many ways to stress, inflammation, and aging, for example in the chronic elevation of free fatty acids, and in various mediators of inflammation, such as tumor necrosis factor (TNF).

Rather than the sustained hyperglycemia which is measured for determining the glycemic index, I think the “diabetogenic” or “carcinogenic” action of starch has to do with the stress reaction that follows the intense stimulation of insulin release. This is most easily seen after a large amount of protein is eaten. Insulin is secreted in response to the amino acids, and besides stimulating cells to take up the amino acids and convert them into protein, the insulin also lowers the blood sugar. This decrease in blood sugar stimulates the formation of many hormones, including cortisol, and under the influence of cortisol both sugar and fat are produced by the breakdown of proteins, including those already forming the tissues of the body. At the same time, adrenalin and several other hormones are causing free fatty acids to appear in the blood.

Since the work of Cushing and Houssay, it has been understood that blood sugar is controlled by antagonistic hormones: Remove the pituitary along with the pancreas, and the lack of insulin doesn't cause hyperglycemia. If something increases cortisol a little, the body can maintain normal blood sugar by secreting more insulin, but that tends to increase cortisol production. A certain degree of glycemia is produced by a particular balance between opposing hormones.

Tryptophan, from dietary protein or from the catabolism of muscles, is turned into serotonin which activates the pituitary stress hormones, increasing cortisol, and intensifying catabolism, which releases more tryptophan. It suppresses thyroid function, which leads to an increased need for the stress hormones. Serotonin impairs glucose oxidation, and contributes to many of the problems associated with diabetes.

“Diabetes” is often the diagnosis, when excess cortisol is the problem. The hormones have traditionally not been measured before diagnosing diabetes and prescribing insulin or other chemical to lower the blood sugar. Some of the worst effects of “diabetes,” including retinal damage, are caused or exacerbated by insulin itself.

Antiserotonin drugs can sometimes alleviate stress and normalize blood sugar. Simply eating sucrose was recently discovered to restrain the stress hormone system (“A new perspective on glucocorticoid feedback: relation to stress, carbohydrate feeding and feeling better,” J Neuroendocrinol 13(9), 2001, KD Laugero).

The free fatty acids released by the stress hormones serve as supplemental fuel, and increase the consumption of oxygen and the production of heat. (This increased oxygen demand is a problem for the heart when it is forced to oxidize fatty acids. [A. Grynberg, 2001]) But if the stored fats happen to be polyunsaturated, they damage the blood vessels and the mitochondria, suppress thyroid function, and cause “glycation” of proteins. They also damage the pancreas, and impair insulin secretion.

A repeated small stress, or overstimulation of insulin secretion, gradually tends to become amplified by the effects of tryptophan and the polyunsaturated fatty acids, with these fats increasing the formation of serotonin, and serotonin increasing the liberation of the fats.

The name, “glycation,” indicates the addition of sugar groups to proteins, such as occurs in diabetes and old age, but when tested in a controlled experiment, lipid peroxidation of polyunsaturated fatty acids produces the protein damage about 23 times faster than the simple sugars do (Fu, et al., 1996). And the oxidation of fats rather than glucose means that the proteins won't have as much protective carbon dioxide combined with their reactive nitrogen atoms, so the real difference in the organism is likely to be greater than that seen by Fu, et al.

These products of lipid peroxidation, HNE, MDA, acrolein, glyoxal, and other highly reactive aldehydes, damage the mitochondria, reducing the ability to oxidize sugar, and to produce energy and protective carbon dioxide.

Fish oil, which is extremely unstable in the presence of oxygen and metals such as iron, produces some of these dangerous products very rapidly. The polyunsaturated “essential fatty acids” and their products, arachidonic acid and many of the prostaglandin-like materials, also produce them.

When glucose can't be oxidized, for any reason, there is a stress reaction, that mobiles free fatty acids. Drugs that oppose the hormones (such as adrenalin or growth hormone) that liberate free fatty acids have been used to treat diabetes, because lowering free fatty acids can restore glucose oxidation.

Brief exposures to polyunsaturated fatty acids can damage the insulin-secreting cells of the pancreas, and the mitochondria in which oxidative energy production takes place. Prolonged exposure causes progressive damage. Acutely, the free polyunsaturated fatty acids cause capillary permeability to increase, and this can be detected at the beginning of “insulin resistance” or “diabetes.” After chronic exposure, the leakiness increases and albumin occurs in the urine, as proteins leak out of the blood vessels. The retina and brain and other organs are damaged by the leaking capillaries.

The blood vessels and other tissues are also damaged by the chronically increased cortisol, and at least in some tissues (the immune system is most sensitive to the interaction) the polyunsaturated fats increase the ability of cortisol to kill the cells.

When cells are stressed, they are likely to waste glucose in two ways, turning some of it into lactic acid, and turning some into fatty acids, even while fats are being oxidized, in place of the sugar that is available. Growth hormone and adrenalin, the stress-induced hormones, stimulate the oxidation of fatty acids, as well as their liberation from storage, so the correction of energy metabolism requires the minimization of the stress hormones, and of the free fatty acids. Prolactin, ACTH, and estrogen also cause the shift of metabolism toward the fatty acids.

Sugar and thyroid hormone (T3, triiodothyronine) correct many parts of the problem. The conversion of T4 into the active T3 requires glucose, and in diabetes, cells are deprived of glucose. Logically, all diabetics would be functionally hypothyroid. Providing T3 and sugar tends to shift energy metabolism away from the oxidation of fats, back to the oxidation of sugar.

Niacinamide, used in moderate doses, can safely help to restrain the excessive production of free fatty acids, and also helps to limit the wasteful conversion of glucose into fat. There is evidence that diabetics are chronically deficient in niacin. Excess fatty acids in the blood probably divert tryptophan from niacin synthesis into serotonin synthesis.

Sodium, which is lost in hypothyroidism and diabetes, increases cellular energy. Diuretics, that cause loss of sodium, can cause apparent diabetes, with increased glucose and fats in the blood. Thyroid, sodium, and glucose work very closely together to maintain cellular energy and stability.

In Houssay's experiments, sugar, protein, and coconut oil protected mice against developing diabetes. The saturated fats of coconut oil are similar to those we synthesize ourselves from sugar. Saturated fats, and the polyunsaturated fats synthesized by plants, have very different effects on many important physiological processes. In every case I know about, the vegetable polyunsaturated fats have harmful effects on our physiology.

For example, they bind to the “receptor” proteins for cortisol, progesterone, and estrogen, and to all of the major proteins related to thyroid function, and to the vesicles that take up nerve transmitter substances, such as glutamic acid.

They allow glutamic acid to injure and kill cells through excessive stimulation; this process is similar to the nerve damage done by cobra venom, and other toxins.

Excess cortisol makes nerve cells more sensitive to excitotoxicity, but the cells are protected if they are provided with an unusually large amount of glucose.

The cells of the thymus gland are very sensitive to damage by stress or cortisol, but they too can be rescued by giving them enough extra glucose to compensate for the cortisol. Polyunsaturated fatty acids have the opposite effect, sensitizing the thymus cells to cortisol. This partly accounts for the immunosuppressive effects of the polyunsaturated fats. (AIDS patients have increased cortisol and polyunsaturated fatty acids in their blood.[E.A. Nunez, 1988.])

Unsaturated fatty acids activate the stress hormones, sugar restrains them.

Simply making animals “deficient” in the unsaturated vegetable oils (which allows them to synthesize their own series of animal polyunsaturated fats, which are very stable), protects them against “autoimmune” diabetes, and against a variety of other “immunological” challenges. The “essential fatty acid” deficiency increases the oxidation of glucose, as it increases the metabolic rate generally.

Saturated fats improve the insulin-secreting response to glucose.

The protective effects of sugar, and the harmful effects of excessive fat metabolism, are now being widely recognized, in every field of physiology. The unsaturated vegetable fats, linoleic and linolenic acid and their derivatives, such as arachidonic acid and the long chain fish oils, have excitatory, stress promoting effects, that shift metabolism away from the oxidation of glucose, and finally destroy the respiratory metabolism altogether. Since cell injury and death generally involve an imbalance between excitation and the ability to produce energy, it is significant that the oxidation of unsaturated fatty acids seems to consume energy, lowering cellular ATP (Clejan, et al, 1986).

The bulk of the age-related tissue damage classified as “glycation end-products” (or “advanced glycation end-products,” AGE) is produced by decomposition of the polyunsaturated fats, rather than by sugars, and this would be minimized by the protective oxidation of glucose to carbon dioxide.

Protein of the right kind, in the right amount, is essential for reducing stress. Gelatin, with its antiinflammatory amino acid balance, helps to regulate fat metabolism.

Aspirin's antiinflammatory actions are generally important when the polyunsaturated fats are producing inflammatory and degenerative changes, and aspirin prevents many of the problems associated with diabetes, reducing vascular leakiness. It improves mitochondrial respiration (De Cristobal, et al., 2002) and helps to regulate blood sugar and lipids (Yuan, et al., 2001). Aspirin's broad range of beneficial effects is probably analogous to vitamin E's, being proportional to protection against the broad range of toxic effects of the polyunsaturated “essential” fatty acids.
 
  • +1
Reactions: Central Cee
:p
 

Attachments

  • 1624675902453.png
    1624675902453.png
    26.6 KB · Views: 87
  • JFL
Reactions: ItsOver.com
Dn rd:feelskek::feelskek::feelskek::feelskek:
 
  • Love it
  • JFL
  • +1
Reactions: Deleted member, ItsOver.com and Deleted member 5189
humans in nature barely ate any sugar. you'd only get it from berries which you would barely ever eat. that's why animals don't need to brush their teeth and why vegans have shit teeth.
 
  • JFL
  • +1
Reactions: Preoximerianas, Chintuck22 and ItsOver.com
Just lol if you think anyones reading this. You wasted ur time copying and pasting all this
 
  • +1
  • JFL
Reactions: Preoximerianas, JawGuyFatFaceGuy, Heguldus and 3 others
Did you write this?
 
  • JFL
Reactions: Preoximerianas, Ronnie Kray and ItsOver.com
humans in nature barely ate any sugar. you'd only get it from berries which you would barely ever eat. that's why animals don't need to brush their teeth and why vegans have shit teeth.
if umens neva et suga then how come it's so tasty? checkmate librels
 
  • JFL
Reactions: Preoximerianas, Heguldus, Deleted member 12669 and 3 others
  • JFL
Reactions: n0rthface and Ronnie Kray
Sugar issues

Since the first doctor noticed, hundreds of years ago, that the urine of a diabetic patient tasted sweet, it has been common to call the condition the sugar disease, or sugar diabetes, and since nothing was known about physiological chemistry, it was commonly believed that eating too much sugar had to be the cause, since the ability of the body to convert the protein in tissues into sugar wasn’t discovered until 1848, by Claude Bernard (who realized that diabetics lost more sugar than they took in). Even though patients continued to pass sugar in their urine until they died, despite the elimination of sugar from their diet, medical policy required that they be restrained to keep them from eating sugar. That prescientific medical belief, that eating sugar causes diabetes, is still held by a very large number, probably the majority, of physicians.
Originally, diabetes was understood to be a wasting disease, but as it became common for doctors to measure glucose, obese people were often found to have hyperglycemia, so the name diabetes has been extended to them, as type 2 diabetes. High blood sugar is often seen along with high blood pressure and obesity in Cushing's syndrome, with excess cortisol, and these features are also used to define the newer metabolic syndrome.
Following the old reasoning about the sugar disease, the newer kind of obese diabetes is commonly blamed on eating too much sugar. Obesity, especially a fat waist, and all its associated health problems, are said by some doctors to be the result of eating too much sugar, especially fructose. (Starch is the only common carbohydrate that contains no fructose.) Obesity is associated not only with diabetes or insulin resistance, but also with atheroslcerosis and heart disease, high blood pressure, generalized inflammation, arthritis, depression, risk of dementia, and cancer.
There is general agreement about the problems commonly associated with obesity, but not about the causes or the way to prevent or cure obesity and the associated conditions.
In an earlier newsletter, I wrote about P. A. Piorry in Paris, in 1864, and Dr. William Budd in England, in 1867, who treated diabetes by adding a large amount of ordinary sugar, sucrose, to the patient's diet. Glucose was known to be the sugar appearing in the diabetics' urine, but sucrose consists of half glucose, and half fructose. In 1874, E. Kulz in Germany reported that diabetics could assimilate fructose better than glucose. In the next decades there were several more reports on the benefits of feeding fructose, including the reduction of glucose in the urine. With the discovery of insulin in 1922, fructose therapy was practically forgotten, until the 1950s when new manufacturing techniques began to make it economical to use.
Its use in diabetic diets became so popular that it became available in health food stores, and was also used in hospitals for intravenous feeding.
However, while fructose was becoming popular, the cholesterol theory of heart disease was being promoted. This was the theory that eating foods containing saturated fat and cholesterol caused heart disease. (My newsletter, Cholesterol, longevity, intelligence, and health, discussed the development of that theory.)
A Swedish physician and researcher, Uffe Ravnskov, has reviewed the medical arguments for the theory that lipids in the blood are the cause of atherosclerosis and heart disease, and shows that there has never been evidence of causality, something which some people, such as Broda Barnes, understood from the beginning. In the 1950s, an English professor, John Yudkin, didn't accept the idea that eating saturated fat was the cause of high blood levels of triglycerides and cholesterol, but he didn’t question the theory that lipids in the blood caused the circulatory disease. He argued that it was sugar, especially the fructose component of sucrose, rather than dietary fat, that caused the high blood lipids seen in the affluent countries, and consequently the diseases. He was sure it was a specific chemical effect of the fructose, because he argued that the nutrients that were removed in refining white flour and white sugar were insignificant, in the whole diet.
Following the publication of Yudkin's books, and coinciding with increasing promotion of the health benefits of unsaturated vegetable oils, many people were converted to Yudkin's version of the lipid theory of heart disease, i.e., that the "bad lipids" in the blood are the result of eating sugar. This has grown into essentially a cult, in which sugar is believed to act like an intoxicant, forcing people to eat until they become obese, and develop the "metabolic syndrome," and "diabetes," and the many problems that derive from that.
The publicity campaign against "saturated fat" as an ally of cholesterol derived its support from the commercial promotion of the polyunsaturated seed oils as food for humans. Although the early investigators of vitamin E knew that the polyunsaturated oils could cause sterility, and others later found that their use in commercial animal foods could cause brain degeneration, there were a few biologists (mostly associated with George Burr) who believed that this type of fatty acid is an essential nutrient.
George and Mildred Burr had created what they claimed to be a disease in rats caused by the absence of linoleic or linolenic acid in their food. Although well known researchers had previously published evidence that animals on a fat free diet were healthy--even healthier than on a normal diet--Burr and his wife published their contradictory claim without bothering to discuss the conflicting evidence. I haven't seen any instance in which Burr or his followers ever mentioned the conflicting evidence. Although other biologists didn't accept Burr's claims, and several researchers subsequently published contrary results, he later became famous when the seed oil industry wanted scientific-seeming reasons for selling their product as an "essential" food. The fact that eating the polyunsaturated fats could cause the blood cholesterol level to decrease slightly was advertised as a health benefit. Later, when human trials showed that more people on the "heart healthy" diet died of heart disease and cancer, more conventional means of advertising were used instead of human tests.
Burr's experimental diet consisted of purified casein (milk protein) and purified sucrose, supplemented with a vitamin concentrate and some minerals. Several of the B vitamins weren't known at the time, and the mineral mixture lacked zinc, copper, manganese, molybdenum, and selenium. More of the essential nutrients were unknown in his time than in Yudkin's, so his failure to consider the possibility of other nutritional deficiencies affecting health is more understandable.
In 1933, Burr observed that his fat-deficient rats consumed oxygen at an extremely high rate, and even then, the thought didn't occur to him that other nutritional deficiencies might have been involved in the condition he described. Ordinarily, the need for vitamins and minerals corresponds to the rate at which calories are being burned, the metabolic rate. Burr recalled that the rats on the fat free diet drank more water, and he reasoned that the absence of linoleic or linolenic acid in their skin was allowing water vapor to escape at a high rate. He didn't explain why the saturated fats the rats were synthesizing from sugar didn't serve at least as well as a "vapor barrier"; they are more effective at water-proofing than unsaturated fats, because of their greater hydrophobicity. The condensed and cross-linked keratin protein in skin cells is the main reason for the skin's relatively low permeability. When an animal is burning calories at a higher rate, its sweat glands are more actively maintaining a normal body temperature, cooling by evaporation; the amount of water evaporated is an approximate measure of metabolic rate, and of thyroid function.
In 1936, a man in Burr's lab, William Brown, agreed to eat a similar diet for six months, to see whether the "essential fatty acid deficiency" affected humans as it did rats.
The diet was very similar to the rats', with a large part of the daily 2500 calories being provided at hourly intervals during the day by sugar syrup (flavored with citric acid and anise oil), protein from 4 quarts of special fat-free skimmed milk, a quart of which was made into cottage cheese, the juice of half an orange, and a "biscuit" made with potato starch, baking powder, mineral oil, and salt, with iron, viosterol (vitamin D), and carotene supplemented.
Brown had suffered from weekly migraine headaches since childhood, and his blood pressure was a little high when he began the diet. After six weeks on the diet, his migraines stopped, and never returned. His plasma inorganic phosphorus declined slightly during the experiment (3.43 mg./100 cc. of plasma and 2.64 on the diet, and after six months on a normal diet 4.2 mg.%), and his total serum proteins increased from 6.98 gm.% to 8.06 gm.% on the experimental diet. His leucocyte count was lower on the high sugar diet, but he didn't experience colds or other sickness. On a normal diet, his systolic blood pressure varied from 140 to 150 mm. of mercury, the diastolic, 95 to 100. After a few months on the sugar and milk diet, his blood pressure had lowered to about 130 over 85 to 88. Several months after he returned to a normal diet, his blood pressure rose to the previous level.
On a normal diet, his weight was 152 pounds, and his metabolic rate was from 9% to 12% below normal, but after six months on the diet it had increased to 2% below normal. After three months on the sugar and milk diet, his weight leveled off at 138 pounds. After being on the diet, when he ate 2000 calories of sugar and milk within two hours, his respiratory quotient would exceed 1.0, but on his normal diet his maximum respiratory quotient following those foods was less than 1.0.
The effect of diabetes is to keep the respiratory quotient low, since a respiratory quotient of one corresponds to the oxidation of pure carbohydrate, and extreme diabetics oxidize fat in preference to carbohydrate, and may have a quotient just a little above 0.7. The results of Brown's and Burr's experiments could be interpreted to mean that the polyunsaturated fats not only lower the metabolic rate, but especially interfere with the metabolism of sugars. In other words, they suggest that the normal diet is diabetogenic.
During the six months of the experiment, the unsaturation of Brown's serum lipids decreased. The authors reported that "There was no essential change in the serum cholesterol as a result of the change in diet." However, in November and December, two months before the experiment began, it had been 252 mg.% in two measurements. At the beginning of the test, it was 298, two weeks later, 228, and four months later, 206 mg%. The total quantity of lipids in his blood didn't seem to change much, since the triglycerides increased as the cholesterol decreased.
By the time of Brown's experiment, other researchers had demonstrated that the cholesterol level was increased in hypothyroidism, and decreased as thyroid function, and oxygen consumption, increased. If Burr's team had been reading the medical literature, they would have understood the relation between Brown's increased metabolic rate and decreased cholesterol level. But they did record the facts, which is valuable.
The authors wrote that "The most interesting subjective effect of the 'fat-free' regimen was the definite disappearance of a feeling of fatigue at the end of the day's work."
A lowered metabolic rate and energy production is a common feature of aging and most degenerative diseases. From the beginning of an animal's life, sugars are the primary source of energy, and with maturation and aging there is a shift toward replacing sugar oxidation with fat oxidation. Old people are able to metabolize fat at the same rate as younger people, but their overall metabolic rate is lower, because they are unable to oxidize sugar at the same high rate as young people. Fat people have a similar selectively reduced ability to oxidize sugar.
Stress and starvation lead to a relative reliance on the fats stored in the tissues, and the mobilization of these as circulating free fatty acids contributes to a slowing of metabolism and a shift away from the use of glucose for energy. This is adaptive in the short term, since relatively little glucose is stored in the tissues (as glycogen), and the proteins making up the body would be rapidly consumed for energy, if it were not for the reduced energy demands resulting from the effects of the free fatty acids.
One of the points at which fatty acids suppress the use of glucose is at the point at which it is converted into fructose, in the process of glycolysis. When fructose is available, it can by-pass this barrier to the use of glucose, and continue to provide pyruvic acid for continuing oxidative metabolism, and if the mitochondria themselves aren't providing sufficient energy, it can leave the cell as lactate, allowing continuing glycolytic energy production. In the brain, this can sustain life in an emergency.
Many people lately have been told, as part of a campaign to explain the high incidence of fatty liver degeneration in the US, supposedly resulting from eating too much sugar, that fructose can be metabolized only by the liver. The liver does have the highest capacity for metabolizing fructose, but the other organs do metabolize it.
If fructose can by-pass the fatty acids' inhibition of glucose metabolism, to be oxidized when glucose can't, and if the metabolism of diabetes involves the oxidation of fatty acids instead of glucose, then we would expect there to be less than the normal amount of fructose in the serum of diabetics, although their defining trait is the presence of an increased amount of glucose. According to Osuagwu and Madumere (2008), that is the case. If a fructose deficiency exists in diabetes, then it is appropriate to supplement it in the diet.
Besides being one of the forms of sugar involved in ordinary energy production, interchangeable with glucose, fructose has some special functions, that aren't as well performed by glucose. It is the main sugar involved in reproduction, in the seminal fluid and intrauterine fluid, and in the developing fetus. After these crucial stages of life are past, glucose becomes the primary molecular source of energy, except when the system is under stress. It has been suggested (Jauniaux, et al., 2005) that the predominance of fructose rather than glucose in the embryo's environment helps to maintain ATP and the oxidative state (cellular redox potential) during development in the low-oxygen environment. The placenta turns glucose from the mother's blood into fructose, and the fructose in the mother's blood can pass through into the fetus, and although glucose can move back from the fetus into the mother's blood, fructose is unable to move in that direction, so a high concentration is maintained in the fluids around the fetus.
The control of the redox potential is sometimes called the "redox signalling system," since it coherently affects all processes and conditions in the cell, including pH and hydrophobicity. For example, when a cell prepares to divide, the balance shifts strongly away from the oxidative condition, with increases in the ratios of NADH to NAD+, of GSH to GSSG, and of lactate to pyruvate. These same shifts occur during most kinds of stress.
In natural stress, decreased availability of oxygen or nutrients is often the key problem, and many poisons can produce similar interference with energy production, for example cyanide or carbon monoxide, which block the use of oxygen, or ethanol, which inhibits the oxidation of sugars, fats, and amino acids (Shelmet, et al., 1988).
When oxygen isn't constantly removing electrons from cells (being chemically reduced by them) those electrons will react elsewhere, creating free radicals (including activated oxygen) and reduced iron, that will create inappropriate chemical reactions (Niknahad, et al., 1995; MacAllister, et al., 2011).
Stresses and poisons of many different types, interfering with the normal flow of electrons to oxygen, produce large amounts of free radicals, which can spread structural and chemical damage, involving all systems of the cell. Ethyl alcohol is a common potentially toxic substance that can have this effect, causing oxidative damage by allowing an excess of electrons to accumulate in the cell, shifting the cells' balance away from the stable oxidized state.
Fructose has been known for many years to accelerate the oxidation of ethanol (by about 80%). Oxygen consumption in the presence of ethanol is increased by fructose more than by glucose (Thieden and Lundquist, 1967). Besides removing the alcohol from the body more quickly, it prevents the oxidative damage, by maintaining or restoring the cell's redox balance, the relatively oxidized state of the NADH/NAD+, lactate/pyruvate, and GSH/GSSH systems. Although glucose has this stabilizing, pro-oxidative function in many situations, this is a general feature of fructose, sometimes allowing it to have the opposite effect of glucose on the cell's redox state. It seems to be largely this generalized shift of the cell's redox state towards oxidation that is behind the ability of a small amount of fructose to catalyze the more rapid oxidation of a large amount of glucose.
Besides protecting against the reductive stresses, fructose can also protect against the oxidative stress of increased hydrogen peroxide (Spasojevic, et al., 2009). Its metabolite, fructose 1,6-bisphosphate, is even more effective as an antioxidant.
Keeping the metabolic rate high has many benefits, including the rapid renewal of cells and their components, such as cholesterol and other lipids, and proteins, which are always susceptible to damage from oxidants, but the high metabolic rate also tends to keep the redox system in the proper balance, reducing the rate of oxidative damage.
Endotoxin absorbed from the intestine is one of the ubiquitous stresses that tends to cause free radical damage. Fructose, probably more than glucose, is protective against damage from endotoxin.
Many stressors cause capillary leakage, allowing albumin and other blood components to enter extracellular spaces or to be lost in the urine, and this is a feature of diabetes, obesity, and a variety of inflammatory and degenerative diseases including Alzheimer's disease (Szekanecz and Koch, 2008; Ujiie, et al., 2003). Although the mechanism isn't understood, fructose supports capillary integrity; fructose feeding for 4 and 8 weeks caused a 56% and 51% reduction in capillary leakage, respectively (Chakir, et al., 1998; Plante, et al., 2003).
The ability of the mitochondria to oxidize pyruvic acid and glucose is characteristically lost to some degree in cancer. When this oxidation fails, the disturbed redox balance of the cell will usually lead to the cell's death, but if it can survive, this balance favors growth and cell division, rather than differentiated function. This was Otto Warburg's discovery, that was rejected by official medicine for 75 years.
Cancer researchers have become interested in this enzyme system that controls the oxidation of pyruvic acid (and thus sugar) by the mitochondria, since these enzymes are crucially defective in cancer cells (and also in diabetes). The chemical DCA, dichloroacetate, is effective against a variety of cancers, and it acts by reactivating the enzymes that oxidize pyruvic acid. Thyroid hormone, insulin, and fructose also activate these enzymes. These are the enzymes that are inactivated by excessive exposure to fatty acids, and that are involved in the progressive replacement of sugar oxidation by fat oxidation, during stress and aging, and in degenerative diseases; for example, a process that inactivates the energy-producing pyruvate dehydrogenase in Alzheimer's disease has been identified (Ishiguro, 1998). Niacinamide, by lowering free fatty acids and regulating the redox system, supporting sugar oxidation, is useful in the whole spectrum of metabolic degenerative diseases.
A few times in the last 80 years, people (starting with Nasonov) have recognized that the hydrophobicity of a cell changes with its degree of excitation, and with its energy level. Recently, even in non-living physical-chemical systems, hydrophobicity and redox potential have been seen to vary together and to influence each other. Recent work shows how the oxidation of fatty acids contributes to the dissolution of mitochondria (Macchioni, et al., 2010). At first glance it might seem odd that the presence of fatty material could reduce the "fat loving" (lipophilic, equivalent to hydrophobic) property of a cell, but the fat used as fuel is in the form of fatty acids, which are soap-like, and spontaneously introduce "wetness" into the relatively water-resistant cell substance. The presence of fatty acids, impairing the last oxidative stage of respiration, increases the tendency of the mitochondrion to release its cytochrome c into the cell in a reduced form, leading to the apoptotic death of the cell. The oxidized form of the cytochrome is more hydrophobic, and stable.
Burr didn't understand that it was his rats' high sugar diet, freed of the anti-oxidative unsaturated fatty acids, that caused their extremely high metabolic rate, but since that time many experiments have made it clear that it is specifically the fructose component of sucrose that is protective against the antimetabolic fats.
Although Brown, et al., weren't focusing on the biological effects of sugar, their results are important in the history of sugar research because their work was done before the culture had been influenced by the development of the lipid theory of heart disease, and the later idea that fructose is responsible for increasing the blood lipids.
In 1963 and 1964, experiments (Carroll, 1964) showed that the effects of glucose and fructose were radically affected by the type of fat in the diet. Although 0.6% of calories as polyunsaturated fat prevents the appearance of the Mead acid (which is considered to indicate a deficiency of essential fats) the "high fructose" diets consistently add 10% or more corn oil or other highly unsaturated fat to the diet. These large quantities of PUFA aren't necessary to prevent a deficiency, but they are needed to obscure the beneficial effects of fructose.
Many studies have found that sucrose is less fattening than starch or glucose, that is, that more calories can be consumed without gaining weight. During exercise, the addition of fructose to glucose increases the oxidation of carbohydrate by about 50% (Jentjens and Jeukendrup, 2005). In another experiment, rats were fed either sucrose or Coca-Cola and Purina chow, and were allowed to eat as much as they wanted (Bukowiecki, et al, 1983). They consumed 50% more calories without gaining extra weight, relative to the standard diet. Ruzzin, et al. (2005) observed rats given a 10.5% or 35% sucrose solution, or water, and observed that the sucrose increased their energy consumption by about 15% without increasing weight gain. Macor, et al. (1990) found that glucose caused a smaller increase in metabolic rate in obese people than in normal weight people, but that fructose increased their metabolic rate as much as it did that of the normal weight people. Tappy, et al. (1993) saw a similar increase in heat production in obese people, relative to the effect of glucose. Brundin, et al. (1993) compared the effects of glucose and fructose in healthy people, and saw a greater oxygen consumption with fructose, and also an increase in the temperature of the blood, and a greater increase in carbon dioxide production.
These metabolic effects have led several groups to recommend the use of fructose for treating shock, the stress of surgery, or infection (e.g., Adolph, et al., 1995).
The commonly recommended alternative to sugar in the diet is starch, but many studies show that it produces all of the effects that are commonly ascribed to sucrose and fructose, for example hyperglycemia (Villaume, et al., 1984) and increased weight gain. The addition of fructose to glucose "can markedly reduce hyperglycemia during intraportal glucose infusion by increasing net hepatic glucose uptake even when insulin secretion is compromised" (Shiota, et al., 2005). "Fructose appears most effective in those normal individuals who have the poorest glucose tolerance" (Moore, et al., 2000).
Lipid peroxidation is involved in the degenerative diseases, and many publications argue that fructose increases it, despite the fact that it can increase the production of uric acid, which is a major component of our endogenous antioxidant system (e.g., Waring, et al., 2003). When rats were fed for 8 weeks on a diet with 18% fructose and 11% saturated fatty acids, the content of polyunsatured fats in the blood decreased, as they had in the Brown, et al., experiment, and their total antioxidant status was increased (Girard, et al., 2005). When stroke-prone spontaneously hypertensive rats were given 60% fructose, superoxide dismutase in their liver was increased, and the authors suggest that this "may constitute an early protective mechanism" (Brosnan and Carkner, 2008). When people were given a 300 calorie drink containing glucose, or fructose, or orange juice, those receiving the glucose had a large increase in oxidative and inflammatory stress (reactive oxygen species, and NF-kappaB binding), and those changes were absent in those receiving the fructose or orange juice (Ghanim, et al., 2007).
One of the observations in Brown, et al., was that the level of phosphate in the serum decreased during the experimental diet. Several later studies show that fructose increases the excretion of phosphate in the urine, while decreasing the level in the serum. However, a common opinion is that it's only the phosphorylation of fructose, increasing the amount in cells, that causes the decrease in the serum; that could account for the momentary drop in serum phosphate during a fructose load, but--since there is only so much phosphate that can be bound to intracellular fructose--it can't account for the chronic depression of the serum phosphate on a continuing diet of fructose or sucrose.
There are many reasons to think that a slight reduction of serum phosphate would be beneficial. It has been suggested that eating fruit is protective against prostate cancer, by lowering serum phosphate (Kapur, 2000). The aging suppressing gene discovered in 1997, named after the Greek life-promoting goddess Klotho, suppresses the reabsorption of phosphate by the kidney (which is also a function of the parathyroid hormone), and inhibits the formation of the activated form of vitamin D, opposing the effect of the parathyroid hormone. In the absence of the gene, serum phosphate is high, and the animal ages and dies prematurely. In humans, in recent years a very close association has been has been documented between increased phosphate levels, within the normal range, and increased risk of cardiovascular disease. Serum phosphate is increased in people with osteoporosis (Gallagher, et al., 1980), and various treatments that lower serum phosphate improve bone mineralization, with the retention of calcium phosphate (Ma and Fu, 2010; Batista, et al., 2010; Kelly, et al., 1967; Parfitt, 1965; Kim, et al., 2003).
At high altitude, or when taking a carbonic anhydrase inhibitor, there is more carbon dioxide in the blood, and the serum phosphate is lower; sucrose and fructose increase the respiratory quotient and carbon dioxide production, and this is probably a factor in lowering the serum phosphate.
Fructose affects the body's ability to retain other nutrients, including magnesium, copper, calcium, and other minerals. Comparing diets with 20% of the calories from fructose or from cornstarch, Holbrook, et al. (1989) concluded "The results indicate that dietary fructose enhances mineral balance." Ordinarily, things (such as thyroid and vitamin D) which improve the retention of magnesium and other nutrients are considered good, but the fructose mythology allows researchers to conclude, after finding an increased magnesium balance, with either 4% or 20% of energy from fructose (compared to cornstarch, bread, and rice), "that dietary fructose adversely affects macromineral homeostasis in humans." (Milne and Nielsen, 2000).
Another study compared the effects of a diet with plain water, or water containing 13% glucose, or sucrose, or fructose, or high fructose corn syrup on the properties of rats' bones: Bone mineral density and mineral content, and bone strength, and mineral balance. The largest differences were between animals drinking the glucose and the fructose solutions. The rats getting the glucose had reduced phosphorus in their bones, and more calcium in their urine, than the rats that got fructose. "The results suggested that glucose rather than fructose exerted more deleterious effects on mineral balance and bone" (Tsanzi, et al., 2008).
An older experiment compared two groups with an otherwise well balanced diet, lacking vitamin D, containing either 68% starch or 68% sucrose. A third group got the starch diet, but with added vitamin D. The rats on the vitamin D deficient starch diet had very low levels of calcium in their blood, and the calcium content of their bones was low, exactly what is expected with the vitamin D deficiency. However, the rats on the sucrose diet, also vitamin D deficient, had normal levels of calcium in their blood. The sucrose, unlike the starch, maintained claim homeostasis. A radioactive calcium tracer showed normal uptake by the bone, and also apparently normal bone development, although their bones were lighter than those receiving vitamin D.
People have told me that when they looked for articles on fructose in PubMed they couldn't find anything except articles about its bad effects. There are two reasons for that. PubMed, like the earlier Index Medicus, represents the material in the National Library of Medicine, and is a medical, rather than a scientific, database, and there is a large amount of important research that it ignores. And because of the authoritarian and conformist nature of the medical profession, when a researcher observes something that is contrary to majority opinion, the title of the publication is unlikely to focus on that. In too many articles in medical journals, the title and conclusions positively misrepresent the data reported in the article.
When the idea of "glycemic index" was being popularized by dietitians, it was already known that starch, consisting of chains of glucose molecules, had a much higher index than fructose and sucrose. The more rapid appearance of glucose in the blood stimulates more insulin, and insulin stimulates fat synthesis, when there is more glucose than can be oxidized immediately. If starch or glucose is eaten at the same time as polyunsaturated fats, which inhibit its oxidation, it will produce more fat. Many animal experiments show this, even when they are intending to show the dangers of fructose and sucrose.
For example (Thresher, et al., 2000), rats were fed diets with 68% carbohydrate, 12% fat (corn oil), and 20% protein. In one group the carbohydrate was starch (cornstarch and maltodextrin, with a glucose equivalence of 10%), and in other groups it was either 68% sucrose, or 34% fructose and 34% glucose, or 34% fructose and 34% starch. (An interesting oddity, fasting triglycerides were highest in the fructose+starch group.)
The weight of their fat pads (epididymal, retroperitoneal, and mesenteric) was greatest in the fructose+starch group, and least in the sucrose group. The starch group's fat was intermediate in weight between those of the sucrose and the fructose+glucose groups.
At the beginning of the experimental diet, the average weight of the animals was 213.1 grams. After five weeks, the animals in the fructose+glucose group gained 164 grams, those in the sucrose group gained 177 grams, and those in the starch group gained 199.2 grams. The animals ate as much of the diet as they wanted, and those in the sucrose group ate the least.
The purpose of their study was to see whether fructose causes "glucose intolerance" and "insulin resistance." Since insulin stimulates appetite (Chance, et al, 1986; Dulloo and Girardier, 1989; Czech, 1988; DiBattista, 1983; Sonoda, 1983; Godbole and York, 1978), and fat synthesis, the reduced food consumption and reduced weight gain show that fructose was protecting against these potentially harmful effects of insulin.
Much of the current concern about the dangers of fructose is focussed on the cornstarch-derived high fructose corn syrup, HFCS. Many studies assume that its composition is nearly all fructose and glucose. However, Wahjudi, et al. (2010) analyzed samples of it before and after hydrolyzing it in acid, to break down other carbohydrates present in it. They found that the carbohydrate content was several times higher than the listed values. "The underestimation of carbohydrate content in beverages may be a contributing factor in the development of obesity in children," and it's especially interesting that so much of it is present in the form of starch-like materials.
Many people are claiming that fructose consumption has increased greatly in the last 30 or 40 years, and that this is responsible for the epidemic of obesity and diabetes. According to the USDA Economic Research Service, the 2007 calorie consumption as flour and cereal products increased 3% from 1970, while added sugar calories decreased 1%. Calories from meats, eggs, and nuts decreased 4%, from dairy foods decreased 3%, and calories from added fats increased 7%. The percentage of calories from fruits and vegetables stayed the same. The average person consumed 603 calories per day more in 2007 than in 1970. If changes in the national diet are responsible for the increase of obesity, diabetes, and the diseases associated with them, then it would seem that the increased consumption of fat and starch is responsible, and that would be consistent with the known effects of starches and polyunsaturated fats.
In monkeys living in the wild, when their diet is mainly fruit, their cortisol is low, and it rises when they eat a diet with less sugar (Behie, et al., 2010). Sucrose consumption lowers ACTH, the main pituitary stress hormone (Klement, et al., 2009; Ulrich-Lai, et al., 2007), and stress promotes increased sugar and fat consumption (Pecoraro, et al., 2004). If animals' adrenal glands are removed, so that they lack the adrenal steroids, they choose to consume more sucrose (Laugero, et al., 2001). Stress seems to be perceived as a need for sugar. In the absence of sucrose, satisfying this need with starch and fat is more likely to lead to obesity.
The glucocorticoid hormones inhibit the metabolism of sugar. Sugar is essential for brain development and maintenance. The effects of environmental stimulation and deprivation-stress can be detected in the thickness of the brain cortex in as little as 4 days in growing rats (Diamond, et al., 1976). These effects can persist through a lifetime, and are even passed on transgenerationally. Experimental evidence shows that polyunsaturated (omega-3) fats retard fetal brain development, and that sugar promotes it. These facts argue against some of the currently popular ideas of the evolution of the human brain based on ancestral diets of fish or meat, which only matters as far as those anthropological theories are used to argue against fruits and other sugars in the present diet.
Honey has been used therapeutically for thousands of years, and recently there has been some research documenting a variety of uses, including treatment of ulcers and colitis, and other inflammatory conditions. Obesity increases mediators of inflammation, including the C-reactive protein (CRP) and homocysteine. Honey, which contains free fructose and free glucose, lowers CRP and homocysteine, as well as triglycerides, glucose, and cholesterol, while it increased insulin more than sucrose did (Al-Waili, 2004). Hypoglycemia intensifies inflammatory reactions, and insulin can reduce inflammation if sugar is available. Obesity, like diabetes, seems to involve a cellular energy deficiency, resulting from the inability to metabolize sugar.
Sucrose (and sometimes honey) is increasingly being used to reduce pain in newborns, for minor things such as injections (Guala, et al., 2001; Okan, et al., 2007; Anand, et al., 2005; Schoen and Fischell, 1991). It's also effective in adults. It acts by influencing a variety of nerve systems, and also reduces stress. Insulin is probably involved in sugar analgesia, as it is in inflammation, since it promotes entry of endorphins into the brain (Witt, et al., 2000).
An extracellular phosphorylated fructose metabolite, diphosphoglycerate, has an essential regulatory effect in the blood; another fructose metabolite, fructose diphosphate, can reduce mast cell histamine release and protect against oxidative and hypoxic injury and endotoxic shock, and it reduces the expression of the inflammation mediators TNF-alpha, IL-6, nitric oxide synthase, and the activation of NF-kappaB, among other protective effects, and its therapeutic value is known, but its relation to dietary sugars hasn't been investigated.
A daily diet that includes two quarts of milk and a quart of orange juice provides enough fructose and other sugars for general resistance to stress, but larger amounts of fruit juice, honey, or other sugars can protect against increased stress, and can reverse some of the established degenerative conditions.
Refined granulated sugar is extremely pure, but it lacks all of the essential nutrients, so it should be considered as a temporary therapeutic material, or as an occasional substitute when good fruit isn't available, or when available honey is allergenic.
Bro, serious advice, honestly try putting these walls of text into separate spoilers with headings. I'm trying to read it, but it is very hard because I get lost and end up reading another paragraph/line after finishing one line. I have read the first paragraph so far if you were wondering.
 
  • +1
  • So Sad
Reactions: Preoximerianas, Deleted member, JawGuyFatFaceGuy and 3 others
humans in nature barely ate any sugar. you'd only get it from berries which you would barely ever eat. that's why animals don't need to brush their teeth and why vegans have shit teeth.
@Chintuck22 funny how?

@realklay11 i would ask you but you jfl react to literally everything
 
  • JFL
Reactions: ItsOver.com and Chintuck22
@Pietrosiek thoughts on eating sougar off zuzia?
 
  • Love it
Reactions: Toth's thot
Natural sugars are good for you
 
  • +1
Reactions: Deleted member 6403
I'd like to read this Bhai, because I am especially interested in cutting sugar Vs cutting carbs, but it's too long, can u give me a TLDR?
 
I'd like to read this Bhai, because I am especially interested in cutting sugar Vs cutting carbs, but it's too long, can u give me a TLDR?
Sugar > Starches > Complex Carbs

Since they digest the quickest and improve the metabolic rate
 
Sugar > Starches > Complex Carbs

Since they digest the quickest and improve the metabolic rate
Interesting, you are saying sugars (eg berries, mango, etc) are better for u to eat than starches (root vegetables, rice, noodles) which in turn are better than complex carbs (whole grain)?

This goes against most theories, but I guess Ur logic makes sense ONLY in people not subsceptible to metabolic syndrome, for those guys they should aim to go low GI, as the high GI sugars will just overload their body
 
 
Sugar issues

Since the first doctor noticed, hundreds of years ago, that the urine of a diabetic patient tasted sweet, it has been common to call the condition the sugar disease, or sugar diabetes, and since nothing was known about physiological chemistry, it was commonly believed that eating too much sugar had to be the cause, since the ability of the body to convert the protein in tissues into sugar wasn’t discovered until 1848, by Claude Bernard (who realized that diabetics lost more sugar than they took in). Even though patients continued to pass sugar in their urine until they died, despite the elimination of sugar from their diet, medical policy required that they be restrained to keep them from eating sugar. That prescientific medical belief, that eating sugar causes diabetes, is still held by a very large number, probably the majority, of physicians.
Originally, diabetes was understood to be a wasting disease, but as it became common for doctors to measure glucose, obese people were often found to have hyperglycemia, so the name diabetes has been extended to them, as type 2 diabetes. High blood sugar is often seen along with high blood pressure and obesity in Cushing's syndrome, with excess cortisol, and these features are also used to define the newer metabolic syndrome.
Following the old reasoning about the sugar disease, the newer kind of obese diabetes is commonly blamed on eating too much sugar. Obesity, especially a fat waist, and all its associated health problems, are said by some doctors to be the result of eating too much sugar, especially fructose. (Starch is the only common carbohydrate that contains no fructose.) Obesity is associated not only with diabetes or insulin resistance, but also with atheroslcerosis and heart disease, high blood pressure, generalized inflammation, arthritis, depression, risk of dementia, and cancer.
There is general agreement about the problems commonly associated with obesity, but not about the causes or the way to prevent or cure obesity and the associated conditions.
In an earlier newsletter, I wrote about P. A. Piorry in Paris, in 1864, and Dr. William Budd in England, in 1867, who treated diabetes by adding a large amount of ordinary sugar, sucrose, to the patient's diet. Glucose was known to be the sugar appearing in the diabetics' urine, but sucrose consists of half glucose, and half fructose. In 1874, E. Kulz in Germany reported that diabetics could assimilate fructose better than glucose. In the next decades there were several more reports on the benefits of feeding fructose, including the reduction of glucose in the urine. With the discovery of insulin in 1922, fructose therapy was practically forgotten, until the 1950s when new manufacturing techniques began to make it economical to use.
Its use in diabetic diets became so popular that it became available in health food stores, and was also used in hospitals for intravenous feeding.
However, while fructose was becoming popular, the cholesterol theory of heart disease was being promoted. This was the theory that eating foods containing saturated fat and cholesterol caused heart disease. (My newsletter, Cholesterol, longevity, intelligence, and health, discussed the development of that theory.)
A Swedish physician and researcher, Uffe Ravnskov, has reviewed the medical arguments for the theory that lipids in the blood are the cause of atherosclerosis and heart disease, and shows that there has never been evidence of causality, something which some people, such as Broda Barnes, understood from the beginning. In the 1950s, an English professor, John Yudkin, didn't accept the idea that eating saturated fat was the cause of high blood levels of triglycerides and cholesterol, but he didn’t question the theory that lipids in the blood caused the circulatory disease. He argued that it was sugar, especially the fructose component of sucrose, rather than dietary fat, that caused the high blood lipids seen in the affluent countries, and consequently the diseases. He was sure it was a specific chemical effect of the fructose, because he argued that the nutrients that were removed in refining white flour and white sugar were insignificant, in the whole diet.
Following the publication of Yudkin's books, and coinciding with increasing promotion of the health benefits of unsaturated vegetable oils, many people were converted to Yudkin's version of the lipid theory of heart disease, i.e., that the "bad lipids" in the blood are the result of eating sugar. This has grown into essentially a cult, in which sugar is believed to act like an intoxicant, forcing people to eat until they become obese, and develop the "metabolic syndrome," and "diabetes," and the many problems that derive from that.
The publicity campaign against "saturated fat" as an ally of cholesterol derived its support from the commercial promotion of the polyunsaturated seed oils as food for humans. Although the early investigators of vitamin E knew that the polyunsaturated oils could cause sterility, and others later found that their use in commercial animal foods could cause brain degeneration, there were a few biologists (mostly associated with George Burr) who believed that this type of fatty acid is an essential nutrient.
George and Mildred Burr had created what they claimed to be a disease in rats caused by the absence of linoleic or linolenic acid in their food. Although well known researchers had previously published evidence that animals on a fat free diet were healthy--even healthier than on a normal diet--Burr and his wife published their contradictory claim without bothering to discuss the conflicting evidence. I haven't seen any instance in which Burr or his followers ever mentioned the conflicting evidence. Although other biologists didn't accept Burr's claims, and several researchers subsequently published contrary results, he later became famous when the seed oil industry wanted scientific-seeming reasons for selling their product as an "essential" food. The fact that eating the polyunsaturated fats could cause the blood cholesterol level to decrease slightly was advertised as a health benefit. Later, when human trials showed that more people on the "heart healthy" diet died of heart disease and cancer, more conventional means of advertising were used instead of human tests.
Burr's experimental diet consisted of purified casein (milk protein) and purified sucrose, supplemented with a vitamin concentrate and some minerals. Several of the B vitamins weren't known at the time, and the mineral mixture lacked zinc, copper, manganese, molybdenum, and selenium. More of the essential nutrients were unknown in his time than in Yudkin's, so his failure to consider the possibility of other nutritional deficiencies affecting health is more understandable.
In 1933, Burr observed that his fat-deficient rats consumed oxygen at an extremely high rate, and even then, the thought didn't occur to him that other nutritional deficiencies might have been involved in the condition he described. Ordinarily, the need for vitamins and minerals corresponds to the rate at which calories are being burned, the metabolic rate. Burr recalled that the rats on the fat free diet drank more water, and he reasoned that the absence of linoleic or linolenic acid in their skin was allowing water vapor to escape at a high rate. He didn't explain why the saturated fats the rats were synthesizing from sugar didn't serve at least as well as a "vapor barrier"; they are more effective at water-proofing than unsaturated fats, because of their greater hydrophobicity. The condensed and cross-linked keratin protein in skin cells is the main reason for the skin's relatively low permeability. When an animal is burning calories at a higher rate, its sweat glands are more actively maintaining a normal body temperature, cooling by evaporation; the amount of water evaporated is an approximate measure of metabolic rate, and of thyroid function.
In 1936, a man in Burr's lab, William Brown, agreed to eat a similar diet for six months, to see whether the "essential fatty acid deficiency" affected humans as it did rats.
The diet was very similar to the rats', with a large part of the daily 2500 calories being provided at hourly intervals during the day by sugar syrup (flavored with citric acid and anise oil), protein from 4 quarts of special fat-free skimmed milk, a quart of which was made into cottage cheese, the juice of half an orange, and a "biscuit" made with potato starch, baking powder, mineral oil, and salt, with iron, viosterol (vitamin D), and carotene supplemented.
Brown had suffered from weekly migraine headaches since childhood, and his blood pressure was a little high when he began the diet. After six weeks on the diet, his migraines stopped, and never returned. His plasma inorganic phosphorus declined slightly during the experiment (3.43 mg./100 cc. of plasma and 2.64 on the diet, and after six months on a normal diet 4.2 mg.%), and his total serum proteins increased from 6.98 gm.% to 8.06 gm.% on the experimental diet. His leucocyte count was lower on the high sugar diet, but he didn't experience colds or other sickness. On a normal diet, his systolic blood pressure varied from 140 to 150 mm. of mercury, the diastolic, 95 to 100. After a few months on the sugar and milk diet, his blood pressure had lowered to about 130 over 85 to 88. Several months after he returned to a normal diet, his blood pressure rose to the previous level.
On a normal diet, his weight was 152 pounds, and his metabolic rate was from 9% to 12% below normal, but after six months on the diet it had increased to 2% below normal. After three months on the sugar and milk diet, his weight leveled off at 138 pounds. After being on the diet, when he ate 2000 calories of sugar and milk within two hours, his respiratory quotient would exceed 1.0, but on his normal diet his maximum respiratory quotient following those foods was less than 1.0.
The effect of diabetes is to keep the respiratory quotient low, since a respiratory quotient of one corresponds to the oxidation of pure carbohydrate, and extreme diabetics oxidize fat in preference to carbohydrate, and may have a quotient just a little above 0.7. The results of Brown's and Burr's experiments could be interpreted to mean that the polyunsaturated fats not only lower the metabolic rate, but especially interfere with the metabolism of sugars. In other words, they suggest that the normal diet is diabetogenic.
During the six months of the experiment, the unsaturation of Brown's serum lipids decreased. The authors reported that "There was no essential change in the serum cholesterol as a result of the change in diet." However, in November and December, two months before the experiment began, it had been 252 mg.% in two measurements. At the beginning of the test, it was 298, two weeks later, 228, and four months later, 206 mg%. The total quantity of lipids in his blood didn't seem to change much, since the triglycerides increased as the cholesterol decreased.
By the time of Brown's experiment, other researchers had demonstrated that the cholesterol level was increased in hypothyroidism, and decreased as thyroid function, and oxygen consumption, increased. If Burr's team had been reading the medical literature, they would have understood the relation between Brown's increased metabolic rate and decreased cholesterol level. But they did record the facts, which is valuable.
The authors wrote that "The most interesting subjective effect of the 'fat-free' regimen was the definite disappearance of a feeling of fatigue at the end of the day's work."
A lowered metabolic rate and energy production is a common feature of aging and most degenerative diseases. From the beginning of an animal's life, sugars are the primary source of energy, and with maturation and aging there is a shift toward replacing sugar oxidation with fat oxidation. Old people are able to metabolize fat at the same rate as younger people, but their overall metabolic rate is lower, because they are unable to oxidize sugar at the same high rate as young people. Fat people have a similar selectively reduced ability to oxidize sugar.
Stress and starvation lead to a relative reliance on the fats stored in the tissues, and the mobilization of these as circulating free fatty acids contributes to a slowing of metabolism and a shift away from the use of glucose for energy. This is adaptive in the short term, since relatively little glucose is stored in the tissues (as glycogen), and the proteins making up the body would be rapidly consumed for energy, if it were not for the reduced energy demands resulting from the effects of the free fatty acids.
One of the points at which fatty acids suppress the use of glucose is at the point at which it is converted into fructose, in the process of glycolysis. When fructose is available, it can by-pass this barrier to the use of glucose, and continue to provide pyruvic acid for continuing oxidative metabolism, and if the mitochondria themselves aren't providing sufficient energy, it can leave the cell as lactate, allowing continuing glycolytic energy production. In the brain, this can sustain life in an emergency.
Many people lately have been told, as part of a campaign to explain the high incidence of fatty liver degeneration in the US, supposedly resulting from eating too much sugar, that fructose can be metabolized only by the liver. The liver does have the highest capacity for metabolizing fructose, but the other organs do metabolize it.
If fructose can by-pass the fatty acids' inhibition of glucose metabolism, to be oxidized when glucose can't, and if the metabolism of diabetes involves the oxidation of fatty acids instead of glucose, then we would expect there to be less than the normal amount of fructose in the serum of diabetics, although their defining trait is the presence of an increased amount of glucose. According to Osuagwu and Madumere (2008), that is the case. If a fructose deficiency exists in diabetes, then it is appropriate to supplement it in the diet.
Besides being one of the forms of sugar involved in ordinary energy production, interchangeable with glucose, fructose has some special functions, that aren't as well performed by glucose. It is the main sugar involved in reproduction, in the seminal fluid and intrauterine fluid, and in the developing fetus. After these crucial stages of life are past, glucose becomes the primary molecular source of energy, except when the system is under stress. It has been suggested (Jauniaux, et al., 2005) that the predominance of fructose rather than glucose in the embryo's environment helps to maintain ATP and the oxidative state (cellular redox potential) during development in the low-oxygen environment. The placenta turns glucose from the mother's blood into fructose, and the fructose in the mother's blood can pass through into the fetus, and although glucose can move back from the fetus into the mother's blood, fructose is unable to move in that direction, so a high concentration is maintained in the fluids around the fetus.
The control of the redox potential is sometimes called the "redox signalling system," since it coherently affects all processes and conditions in the cell, including pH and hydrophobicity. For example, when a cell prepares to divide, the balance shifts strongly away from the oxidative condition, with increases in the ratios of NADH to NAD+, of GSH to GSSG, and of lactate to pyruvate. These same shifts occur during most kinds of stress.
In natural stress, decreased availability of oxygen or nutrients is often the key problem, and many poisons can produce similar interference with energy production, for example cyanide or carbon monoxide, which block the use of oxygen, or ethanol, which inhibits the oxidation of sugars, fats, and amino acids (Shelmet, et al., 1988).
When oxygen isn't constantly removing electrons from cells (being chemically reduced by them) those electrons will react elsewhere, creating free radicals (including activated oxygen) and reduced iron, that will create inappropriate chemical reactions (Niknahad, et al., 1995; MacAllister, et al., 2011).
Stresses and poisons of many different types, interfering with the normal flow of electrons to oxygen, produce large amounts of free radicals, which can spread structural and chemical damage, involving all systems of the cell. Ethyl alcohol is a common potentially toxic substance that can have this effect, causing oxidative damage by allowing an excess of electrons to accumulate in the cell, shifting the cells' balance away from the stable oxidized state.
Fructose has been known for many years to accelerate the oxidation of ethanol (by about 80%). Oxygen consumption in the presence of ethanol is increased by fructose more than by glucose (Thieden and Lundquist, 1967). Besides removing the alcohol from the body more quickly, it prevents the oxidative damage, by maintaining or restoring the cell's redox balance, the relatively oxidized state of the NADH/NAD+, lactate/pyruvate, and GSH/GSSH systems. Although glucose has this stabilizing, pro-oxidative function in many situations, this is a general feature of fructose, sometimes allowing it to have the opposite effect of glucose on the cell's redox state. It seems to be largely this generalized shift of the cell's redox state towards oxidation that is behind the ability of a small amount of fructose to catalyze the more rapid oxidation of a large amount of glucose.
Besides protecting against the reductive stresses, fructose can also protect against the oxidative stress of increased hydrogen peroxide (Spasojevic, et al., 2009). Its metabolite, fructose 1,6-bisphosphate, is even more effective as an antioxidant.
Keeping the metabolic rate high has many benefits, including the rapid renewal of cells and their components, such as cholesterol and other lipids, and proteins, which are always susceptible to damage from oxidants, but the high metabolic rate also tends to keep the redox system in the proper balance, reducing the rate of oxidative damage.
Endotoxin absorbed from the intestine is one of the ubiquitous stresses that tends to cause free radical damage. Fructose, probably more than glucose, is protective against damage from endotoxin.
Many stressors cause capillary leakage, allowing albumin and other blood components to enter extracellular spaces or to be lost in the urine, and this is a feature of diabetes, obesity, and a variety of inflammatory and degenerative diseases including Alzheimer's disease (Szekanecz and Koch, 2008; Ujiie, et al., 2003). Although the mechanism isn't understood, fructose supports capillary integrity; fructose feeding for 4 and 8 weeks caused a 56% and 51% reduction in capillary leakage, respectively (Chakir, et al., 1998; Plante, et al., 2003).
The ability of the mitochondria to oxidize pyruvic acid and glucose is characteristically lost to some degree in cancer. When this oxidation fails, the disturbed redox balance of the cell will usually lead to the cell's death, but if it can survive, this balance favors growth and cell division, rather than differentiated function. This was Otto Warburg's discovery, that was rejected by official medicine for 75 years.
Cancer researchers have become interested in this enzyme system that controls the oxidation of pyruvic acid (and thus sugar) by the mitochondria, since these enzymes are crucially defective in cancer cells (and also in diabetes). The chemical DCA, dichloroacetate, is effective against a variety of cancers, and it acts by reactivating the enzymes that oxidize pyruvic acid. Thyroid hormone, insulin, and fructose also activate these enzymes. These are the enzymes that are inactivated by excessive exposure to fatty acids, and that are involved in the progressive replacement of sugar oxidation by fat oxidation, during stress and aging, and in degenerative diseases; for example, a process that inactivates the energy-producing pyruvate dehydrogenase in Alzheimer's disease has been identified (Ishiguro, 1998). Niacinamide, by lowering free fatty acids and regulating the redox system, supporting sugar oxidation, is useful in the whole spectrum of metabolic degenerative diseases.
A few times in the last 80 years, people (starting with Nasonov) have recognized that the hydrophobicity of a cell changes with its degree of excitation, and with its energy level. Recently, even in non-living physical-chemical systems, hydrophobicity and redox potential have been seen to vary together and to influence each other. Recent work shows how the oxidation of fatty acids contributes to the dissolution of mitochondria (Macchioni, et al., 2010). At first glance it might seem odd that the presence of fatty material could reduce the "fat loving" (lipophilic, equivalent to hydrophobic) property of a cell, but the fat used as fuel is in the form of fatty acids, which are soap-like, and spontaneously introduce "wetness" into the relatively water-resistant cell substance. The presence of fatty acids, impairing the last oxidative stage of respiration, increases the tendency of the mitochondrion to release its cytochrome c into the cell in a reduced form, leading to the apoptotic death of the cell. The oxidized form of the cytochrome is more hydrophobic, and stable.
Burr didn't understand that it was his rats' high sugar diet, freed of the anti-oxidative unsaturated fatty acids, that caused their extremely high metabolic rate, but since that time many experiments have made it clear that it is specifically the fructose component of sucrose that is protective against the antimetabolic fats.
Although Brown, et al., weren't focusing on the biological effects of sugar, their results are important in the history of sugar research because their work was done before the culture had been influenced by the development of the lipid theory of heart disease, and the later idea that fructose is responsible for increasing the blood lipids.
In 1963 and 1964, experiments (Carroll, 1964) showed that the effects of glucose and fructose were radically affected by the type of fat in the diet. Although 0.6% of calories as polyunsaturated fat prevents the appearance of the Mead acid (which is considered to indicate a deficiency of essential fats) the "high fructose" diets consistently add 10% or more corn oil or other highly unsaturated fat to the diet. These large quantities of PUFA aren't necessary to prevent a deficiency, but they are needed to obscure the beneficial effects of fructose.
Many studies have found that sucrose is less fattening than starch or glucose, that is, that more calories can be consumed without gaining weight. During exercise, the addition of fructose to glucose increases the oxidation of carbohydrate by about 50% (Jentjens and Jeukendrup, 2005). In another experiment, rats were fed either sucrose or Coca-Cola and Purina chow, and were allowed to eat as much as they wanted (Bukowiecki, et al, 1983). They consumed 50% more calories without gaining extra weight, relative to the standard diet. Ruzzin, et al. (2005) observed rats given a 10.5% or 35% sucrose solution, or water, and observed that the sucrose increased their energy consumption by about 15% without increasing weight gain. Macor, et al. (1990) found that glucose caused a smaller increase in metabolic rate in obese people than in normal weight people, but that fructose increased their metabolic rate as much as it did that of the normal weight people. Tappy, et al. (1993) saw a similar increase in heat production in obese people, relative to the effect of glucose. Brundin, et al. (1993) compared the effects of glucose and fructose in healthy people, and saw a greater oxygen consumption with fructose, and also an increase in the temperature of the blood, and a greater increase in carbon dioxide production.
These metabolic effects have led several groups to recommend the use of fructose for treating shock, the stress of surgery, or infection (e.g., Adolph, et al., 1995).
The commonly recommended alternative to sugar in the diet is starch, but many studies show that it produces all of the effects that are commonly ascribed to sucrose and fructose, for example hyperglycemia (Villaume, et al., 1984) and increased weight gain. The addition of fructose to glucose "can markedly reduce hyperglycemia during intraportal glucose infusion by increasing net hepatic glucose uptake even when insulin secretion is compromised" (Shiota, et al., 2005). "Fructose appears most effective in those normal individuals who have the poorest glucose tolerance" (Moore, et al., 2000).
Lipid peroxidation is involved in the degenerative diseases, and many publications argue that fructose increases it, despite the fact that it can increase the production of uric acid, which is a major component of our endogenous antioxidant system (e.g., Waring, et al., 2003). When rats were fed for 8 weeks on a diet with 18% fructose and 11% saturated fatty acids, the content of polyunsatured fats in the blood decreased, as they had in the Brown, et al., experiment, and their total antioxidant status was increased (Girard, et al., 2005). When stroke-prone spontaneously hypertensive rats were given 60% fructose, superoxide dismutase in their liver was increased, and the authors suggest that this "may constitute an early protective mechanism" (Brosnan and Carkner, 2008). When people were given a 300 calorie drink containing glucose, or fructose, or orange juice, those receiving the glucose had a large increase in oxidative and inflammatory stress (reactive oxygen species, and NF-kappaB binding), and those changes were absent in those receiving the fructose or orange juice (Ghanim, et al., 2007).
One of the observations in Brown, et al., was that the level of phosphate in the serum decreased during the experimental diet. Several later studies show that fructose increases the excretion of phosphate in the urine, while decreasing the level in the serum. However, a common opinion is that it's only the phosphorylation of fructose, increasing the amount in cells, that causes the decrease in the serum; that could account for the momentary drop in serum phosphate during a fructose load, but--since there is only so much phosphate that can be bound to intracellular fructose--it can't account for the chronic depression of the serum phosphate on a continuing diet of fructose or sucrose.
There are many reasons to think that a slight reduction of serum phosphate would be beneficial. It has been suggested that eating fruit is protective against prostate cancer, by lowering serum phosphate (Kapur, 2000). The aging suppressing gene discovered in 1997, named after the Greek life-promoting goddess Klotho, suppresses the reabsorption of phosphate by the kidney (which is also a function of the parathyroid hormone), and inhibits the formation of the activated form of vitamin D, opposing the effect of the parathyroid hormone. In the absence of the gene, serum phosphate is high, and the animal ages and dies prematurely. In humans, in recent years a very close association has been has been documented between increased phosphate levels, within the normal range, and increased risk of cardiovascular disease. Serum phosphate is increased in people with osteoporosis (Gallagher, et al., 1980), and various treatments that lower serum phosphate improve bone mineralization, with the retention of calcium phosphate (Ma and Fu, 2010; Batista, et al., 2010; Kelly, et al., 1967; Parfitt, 1965; Kim, et al., 2003).
At high altitude, or when taking a carbonic anhydrase inhibitor, there is more carbon dioxide in the blood, and the serum phosphate is lower; sucrose and fructose increase the respiratory quotient and carbon dioxide production, and this is probably a factor in lowering the serum phosphate.
Fructose affects the body's ability to retain other nutrients, including magnesium, copper, calcium, and other minerals. Comparing diets with 20% of the calories from fructose or from cornstarch, Holbrook, et al. (1989) concluded "The results indicate that dietary fructose enhances mineral balance." Ordinarily, things (such as thyroid and vitamin D) which improve the retention of magnesium and other nutrients are considered good, but the fructose mythology allows researchers to conclude, after finding an increased magnesium balance, with either 4% or 20% of energy from fructose (compared to cornstarch, bread, and rice), "that dietary fructose adversely affects macromineral homeostasis in humans." (Milne and Nielsen, 2000).
Another study compared the effects of a diet with plain water, or water containing 13% glucose, or sucrose, or fructose, or high fructose corn syrup on the properties of rats' bones: Bone mineral density and mineral content, and bone strength, and mineral balance. The largest differences were between animals drinking the glucose and the fructose solutions. The rats getting the glucose had reduced phosphorus in their bones, and more calcium in their urine, than the rats that got fructose. "The results suggested that glucose rather than fructose exerted more deleterious effects on mineral balance and bone" (Tsanzi, et al., 2008).
An older experiment compared two groups with an otherwise well balanced diet, lacking vitamin D, containing either 68% starch or 68% sucrose. A third group got the starch diet, but with added vitamin D. The rats on the vitamin D deficient starch diet had very low levels of calcium in their blood, and the calcium content of their bones was low, exactly what is expected with the vitamin D deficiency. However, the rats on the sucrose diet, also vitamin D deficient, had normal levels of calcium in their blood. The sucrose, unlike the starch, maintained claim homeostasis. A radioactive calcium tracer showed normal uptake by the bone, and also apparently normal bone development, although their bones were lighter than those receiving vitamin D.
People have told me that when they looked for articles on fructose in PubMed they couldn't find anything except articles about its bad effects. There are two reasons for that. PubMed, like the earlier Index Medicus, represents the material in the National Library of Medicine, and is a medical, rather than a scientific, database, and there is a large amount of important research that it ignores. And because of the authoritarian and conformist nature of the medical profession, when a researcher observes something that is contrary to majority opinion, the title of the publication is unlikely to focus on that. In too many articles in medical journals, the title and conclusions positively misrepresent the data reported in the article.
When the idea of "glycemic index" was being popularized by dietitians, it was already known that starch, consisting of chains of glucose molecules, had a much higher index than fructose and sucrose. The more rapid appearance of glucose in the blood stimulates more insulin, and insulin stimulates fat synthesis, when there is more glucose than can be oxidized immediately. If starch or glucose is eaten at the same time as polyunsaturated fats, which inhibit its oxidation, it will produce more fat. Many animal experiments show this, even when they are intending to show the dangers of fructose and sucrose.
For example (Thresher, et al., 2000), rats were fed diets with 68% carbohydrate, 12% fat (corn oil), and 20% protein. In one group the carbohydrate was starch (cornstarch and maltodextrin, with a glucose equivalence of 10%), and in other groups it was either 68% sucrose, or 34% fructose and 34% glucose, or 34% fructose and 34% starch. (An interesting oddity, fasting triglycerides were highest in the fructose+starch group.)
The weight of their fat pads (epididymal, retroperitoneal, and mesenteric) was greatest in the fructose+starch group, and least in the sucrose group. The starch group's fat was intermediate in weight between those of the sucrose and the fructose+glucose groups.
At the beginning of the experimental diet, the average weight of the animals was 213.1 grams. After five weeks, the animals in the fructose+glucose group gained 164 grams, those in the sucrose group gained 177 grams, and those in the starch group gained 199.2 grams. The animals ate as much of the diet as they wanted, and those in the sucrose group ate the least.
The purpose of their study was to see whether fructose causes "glucose intolerance" and "insulin resistance." Since insulin stimulates appetite (Chance, et al, 1986; Dulloo and Girardier, 1989; Czech, 1988; DiBattista, 1983; Sonoda, 1983; Godbole and York, 1978), and fat synthesis, the reduced food consumption and reduced weight gain show that fructose was protecting against these potentially harmful effects of insulin.
Much of the current concern about the dangers of fructose is focussed on the cornstarch-derived high fructose corn syrup, HFCS. Many studies assume that its composition is nearly all fructose and glucose. However, Wahjudi, et al. (2010) analyzed samples of it before and after hydrolyzing it in acid, to break down other carbohydrates present in it. They found that the carbohydrate content was several times higher than the listed values. "The underestimation of carbohydrate content in beverages may be a contributing factor in the development of obesity in children," and it's especially interesting that so much of it is present in the form of starch-like materials.
Many people are claiming that fructose consumption has increased greatly in the last 30 or 40 years, and that this is responsible for the epidemic of obesity and diabetes. According to the USDA Economic Research Service, the 2007 calorie consumption as flour and cereal products increased 3% from 1970, while added sugar calories decreased 1%. Calories from meats, eggs, and nuts decreased 4%, from dairy foods decreased 3%, and calories from added fats increased 7%. The percentage of calories from fruits and vegetables stayed the same. The average person consumed 603 calories per day more in 2007 than in 1970. If changes in the national diet are responsible for the increase of obesity, diabetes, and the diseases associated with them, then it would seem that the increased consumption of fat and starch is responsible, and that would be consistent with the known effects of starches and polyunsaturated fats.
In monkeys living in the wild, when their diet is mainly fruit, their cortisol is low, and it rises when they eat a diet with less sugar (Behie, et al., 2010). Sucrose consumption lowers ACTH, the main pituitary stress hormone (Klement, et al., 2009; Ulrich-Lai, et al., 2007), and stress promotes increased sugar and fat consumption (Pecoraro, et al., 2004). If animals' adrenal glands are removed, so that they lack the adrenal steroids, they choose to consume more sucrose (Laugero, et al., 2001). Stress seems to be perceived as a need for sugar. In the absence of sucrose, satisfying this need with starch and fat is more likely to lead to obesity.
The glucocorticoid hormones inhibit the metabolism of sugar. Sugar is essential for brain development and maintenance. The effects of environmental stimulation and deprivation-stress can be detected in the thickness of the brain cortex in as little as 4 days in growing rats (Diamond, et al., 1976). These effects can persist through a lifetime, and are even passed on transgenerationally. Experimental evidence shows that polyunsaturated (omega-3) fats retard fetal brain development, and that sugar promotes it. These facts argue against some of the currently popular ideas of the evolution of the human brain based on ancestral diets of fish or meat, which only matters as far as those anthropological theories are used to argue against fruits and other sugars in the present diet.
Honey has been used therapeutically for thousands of years, and recently there has been some research documenting a variety of uses, including treatment of ulcers and colitis, and other inflammatory conditions. Obesity increases mediators of inflammation, including the C-reactive protein (CRP) and homocysteine. Honey, which contains free fructose and free glucose, lowers CRP and homocysteine, as well as triglycerides, glucose, and cholesterol, while it increased insulin more than sucrose did (Al-Waili, 2004). Hypoglycemia intensifies inflammatory reactions, and insulin can reduce inflammation if sugar is available. Obesity, like diabetes, seems to involve a cellular energy deficiency, resulting from the inability to metabolize sugar.
Sucrose (and sometimes honey) is increasingly being used to reduce pain in newborns, for minor things such as injections (Guala, et al., 2001; Okan, et al., 2007; Anand, et al., 2005; Schoen and Fischell, 1991). It's also effective in adults. It acts by influencing a variety of nerve systems, and also reduces stress. Insulin is probably involved in sugar analgesia, as it is in inflammation, since it promotes entry of endorphins into the brain (Witt, et al., 2000).
An extracellular phosphorylated fructose metabolite, diphosphoglycerate, has an essential regulatory effect in the blood; another fructose metabolite, fructose diphosphate, can reduce mast cell histamine release and protect against oxidative and hypoxic injury and endotoxic shock, and it reduces the expression of the inflammation mediators TNF-alpha, IL-6, nitric oxide synthase, and the activation of NF-kappaB, among other protective effects, and its therapeutic value is known, but its relation to dietary sugars hasn't been investigated.
A daily diet that includes two quarts of milk and a quart of orange juice provides enough fructose and other sugars for general resistance to stress, but larger amounts of fruit juice, honey, or other sugars can protect against increased stress, and can reverse some of the established degenerative conditions.
Refined granulated sugar is extremely pure, but it lacks all of the essential nutrients, so it should be considered as a temporary therapeutic material, or as an occasional substitute when good fruit isn't available, or when available honey is allergenic.
A lesser known fact is that almost no studies can find a link between high BMI and excessive sugar consumption from solid foods. That in fact, one study found that all sugars with the exception of fructose actually DOWN-regulated the activity of the FTO gene (commonly implicated in obesity). There is also a variant that causes people to crave more sugary snacks, and this same variant is linked with lower BMI and hip proportions. This is because it also caused the carriers to crave and consume fewer fats as well as take in fewer overall calories (as sugary foods can actually be more satiating) which in turn affects their physical proportions. Many studies looking at the correlations between BMI and metabolic indicators find that increased reported sugar consumption is linked with lower BMI and better metabolic indicators. Granted, this is self reported data. Additionally, lab-controlled trials have found that administering desserts in addition to a regimented meal plan helped a group of overweight women lose more weight than overweight women with the same caloric intake but no dessert.

SATURATED FAT AND FRUCTOSE SYRUPS ARE THE ISSUES, NOT MOST SUGARS.
 
very new to my peating journey, having lots of fruit juices and adding some saturated sugars into coffee and shit

what looks benefits can i expect tbhngl
 
Glucose and sucrose for diabetes

Diabetes has been known since ancient times as a wasting disease in which sugar was lost in the urine, but more recently the name has been used to describe the presence of more than the normal amount of glucose in the blood, even in the absence of glucose in the urine. Some of the medical ideas regarding the original form of the condition have been applied to the newer form.
Cultural "paradigms" or ideologies are so convenient that people often don't bother to doubt them, and they are sometimes so rigorously enforced that people learn to keep their doubts to themselves. Public concern about diabetes has been growing for decades, but despite the introduction of insulin and other drugs to treat it, and massive campaigns to "improve" eating habits, mortality from diabetes has been increasing during the last 100 years. Diabetes ("type 1") has been increasing even among children (Barat, et al., 2008).

A basic meaning of homeopathic medicine is the support of the organism's ability to heal itself; the essence of allopathy is that the physician fights "a disease" to cure the patient, e.g., by cutting out tumors or killing germs.

Confidence in the organism's essential rationality led the doctors with a homeopathic orientation to see a fever as part of a recuperative process, while their allopathic opponents sometimes saw fever as the essence of the sickness to be cured. Homeopaths concentrated on the nature of the patient; allopaths concentrated on a disease entity in itself, and were likely to ignore the patient's idiosyncrasies and preferences.

Diabetes was named for the excessive urination it causes, and for the sugar in the urine. It was called the sugar disease, and physicians were taught that sugar was the problem. Patients were ordered to avoid sweet foods, and in hospitals they were sometimes locked up to keep them from finding sweets. The practice was derived from ideology, not from any evidence that the treatment helped.

In 1857, M. Piorry in Paris and William Budd in Bristol, England, reasoned that if a patient was losing a pound of sugar every day in 10 liters of urine, and was losing weight very rapidly, and had an intense craving for sugar, it would be reasonable to replace some of the lost sugar, simply because the quick weight loss of diabetes invariably led to death. Keeping patients from eating what they craved seemed both cruel and futile.

After Budd's detailed reports of a woman's progressive recovery over a period of several weeks when he prescribed 8 ounces of sugar every day, along with a normal diet including beef and beef broth, a London physician, Thomas Williams, wrote sarcastically about Budd's metaphysical ideas, and reported his own trial of a diet that he described as similar to Budd's. But after two or three days he decided his patients were getting worse, and stopped the experiment.

Williams' publication was presented as a scientific refutation of Budd's deluded homeopathic ideas, but Budd hadn't explained his experiment as anything more than an attempt to slow the patient's death from wasting which was sure to be the result of losing so much sugar in the urine. The following year Budd described another patient, a young man who had become too weak to work and who was losing weight at an extreme rate. Budd's prescription included 8 ounces of white sugar and 4 ounces of honey every day, and again, instead of increasing the amount of glucose in the urine, the amount decreased quickly as the patient began eating almost as much sugar as was being lost initially, and then as the loss of sugar in the urine decreased, the patient gained weight and recovered his strength.

Drs. Budd and Piorry described patients recovering from an incurable disease, and that has usually been enough to make the medical profession antagonistic. Even when a physician has himself diagnosed diabetes and told a patient that it would be necessary to inject insulin for the rest of his life, if that patient recovers by changing his diet, the physician will typically say that the diagnosis was wrong, because diabetes is incurable.

Twenty-five years ago, some rabbits were made diabetic with a poison that killed their insulin-secreting pancreatic beta-cells, and when some of them recovered from the diabetes after being given supplemental DHEA, it was found that their beta-cells had regenerated. The more recent interest in stem cells has led several research groups to acknowledge that in animals the insulin-producing cells are able to regenerate.

It is now conceivable that there will be an effort to understand the factors that damage the beta-cells, and the factors that allow them to regenerate. The observations of Budd and Piorry would be a good place to start such a reconsideration.

For many years, physicians have been taught that diabetes is either "genetic" or possibly caused by a viral infection, that might trigger an "autoimmune reaction," but the study of cellular respiration and energy metabolism and endocrinology has provided more convincing explanations. The antibodies that are found in the "autoimmune" conditions are evidence of tissue damage, but the damage may have been done by metabolic toxins, with the immune system's involvement being primarily the removal of defective cells.

In the 1940s, Bernardo Houssay found that coconut oil protected animals from poison-induced diabetes, while a lard-based diet failed to protect them. Later, glucose itself was found to protect the pancreatic beta-cells from poisons.

In 1963, P.J. Randle clearly described the inhibition of glucose oxidation by free fatty acids. Later, when lipid emulsions came into use for intravenous feeding in hospitals, it was found that they blocked glucose oxidation, lowered the metabolic rate, suppressed immunity, and increased lipid peroxidation and oxidative stress.
Estrogen and stress are both known to create some of the conditions of diabetes, while increasing fat oxidation and inhibiting glucose oxidation. Emotional stress, overwork, trauma, and infections have been known to initiate diabetes. Estrogen increases free fatty acids and decreases glycogen storage, and when birth control pills were becoming popular, some researchers warned that they might cause diabetes. But the food oil industry and the estrogen industry were satisfied with the medical doctrine that diabetes was caused by eating too much sugar.
If the essence of diabetes is the presence of too much sugar, then it seems reasonable to argue that it is the excess sugar that's responsible for the suffering and death associated with the disease, otherwise, how would the prohibition of sugar in the diet be justified? In fact, the argument is made (e.g., Muggeo, 1998) that it is the hyperglycemia that causes problems such as hypertension, kidney failure, heart failure, neuropathy, blindness, dementia, and gangrene.

As information about the many physiological and biochemical events associated with diabetes has accumulated, the basic doctrine that "sugar causes diabetes" has extended itself to whatever the topic of discussion is: "Glucose causes" the death of beta-cells, glucose causes blood vessels to become leaky, glucose causes cells to be unable to absorb glucose, glucose causes the formation of free radicals, glucose impairs immunity and wound healing, but causes inflammation while preventing the "respiratory burst" in which free radicals are produced by cells that cause inflammation, it disturbs enzyme functions, impairs nerve conduction and muscle strength, etc., and it is also addictive, causing people to irrationally seek the very material that is poisoning them.

Tens of thousands of publications describe the pathogenic effects of sugar. To prove their point, they grow cells in a culture dish, and find that when they are exposed to excess glucose, often 5 times the normal amount, they deteriorate. In the artificial conditions of cell culture, the oversupply of glucose causes lactic acid to accumulate, leading to toxic effects. But in the organism, the hyperglycemia is compensating for a sensed deficiency of glucose, a need for more energy.

If diabetes means that cells can't absorb or metabolize glucose, then any cellular function that requires glucose will be impaired, despite the presence of glucose in the blood. It is the intracellular absence of glucose which is problematic, rather than its extracellular excess.
Neuroglycopenia (or neuroglucopenia) or intracellular glycopenia refers to the deficit of glucose in cells. When the brain senses a lack of glucose, nerves are activated to increase the amount of glucose in the blood, to correct the problem. As long as the brain senses the need for more glucose, the regulatory systems will make the adjustments to the blood glucose level.

The antagonism between fat and sugar that Randle described can involve the suppression of sugar oxidation when the concentration of fats in the bloodstream is increased by eating fatty food, or by releasing fats from the tissues by lipolysis, but it can also involve the suppression of fat oxidation by inhibiting the release of fatty acids from the tissues, when a sufficient amount of sugar is eaten.

When a normal person, or even a "type 2 diabetic," is given a large dose of sugar, there is a suppression of lipolysis, and the concentration of free fatty acids in the bloodstream decreases, though the suppression is weaker in the diabetic (Soriguer, et al., 2008). Insulin, released by the sugar, inhibits lipolysis, reducing the supply of fats to the respiring cells.

Free fatty acids suppress mitochondrial respiration (Kamikawa and Yamazaki, 1981), leading to increased glycolysis (producing lactic acid) to maintain cellular energy. The suppression of mitochondrial respiration increases the production of toxic free radicals, and the decreased carbon dioxide makes the proteins more susceptible to attack by free radicals. The lactate produced under the influence of excessive fat metabolism stimulates the release of endorphins, which are lipolytic, releasing more free fatty acids from the tissues. Acting through cytokines such as interleukin-6, lactate shifts the balance toward the catabolic hormones, leading to tissue wasting.

Lactic acid itself, and the longer chain fatty acids, inhibit the regulatory enzyme pyruvate dehydrogenase (which is activated by insulin), reducing the oxidative production of energy. Drugs to activate this enzyme are being studied by the pharmaceutical industry as treatments for diabetes and cancer (for example, DCA, dichloroacetate).

Oxidative damage of proteins is often described as glycation or glycosylation, but it really consists of many addition and crosslinking reactions, most often onto, or between, lysine groups. Carbon dioxide normally associates with lysine groups, so the destructive reactions are favored when carbon dioxide is displaced by lactic acid. The reactive fragments of polyunsaturated fatty acids are much more often the source of the protein-damaging radicals than the carbohydrates are.

The importance of the fats in causing type-2 diabetes is coming to be accepted, for example Li, et al., recently (2008) said "The cellular link between fatty acids and ROS (reactive oxygen species) is essentially the mitochondrion, a key organelle for the control of insulin secretion. Mitochondria are the main source of ROS and are also the primary target of oxidative attacks."
But much earlier (Wright, et al., 1988) it had been demonstrated that a deficiency of the "essential fatty acids" prevents toxin-induced diabetes and greatly increases resistance to inflammation (Lefkowith, et al., 1990). The lack of those so-called "essential fatty acids" also prevents autoimmune diabetes in a strain of diabetic mice (Benhamou, et al., 1995),

Suppressing fatty acid oxidation improves the contraction of the heart muscle and increases the efficiency of oxygen use (Chandler, et al., 2003). Various drugs are being considered for that purpose, but niacinamide is already being used to improve heart function, since it lowers the concentration of free fatty acids.

The antimetabolic and toxic effects of the polyunsaturated fatty acids can account for the "insulin resistance" that characterizes type-2 diabetes, but similar actions in the pancreatic beta-cells can impair or kill those cells, creating a deficiency of insulin, resembling type-1 diabetes.
The suppression of mitochondrial respiration causes increased free radical damage, and the presence of polyunsaturated fatty acids in the suppressed cell increases the rate of fat decomposition and production of toxins.

Increasing the rate of respiration by replacing the fats with glucose reduces the availability of electrons that can trigger lipid peroxidation and produce toxic free radicals, and the shift of fuel also increases the amount of carbon dioxide produced, which can protect the protein amino groups such as lysine from glycation and lipoxidation.

While it's clear that it is the excessive oxidation of fat that damages cells in the "diabetic" state in which cells aren't able to use glucose, it's important to look at some of the situations in which so many researchers are blaming problems on hyperglycemia.

Important problems in diabetes are slow wound healing, excessive permeability or leakiness of blood vessels which allows molecules such as albumin to be extravasated, and the impaired function and survival of pancreatic beta-cells.

During the healing of a wound in a diabetic individual, the local concentration of glucose decreases and then entirely disappears, as healing stops. Applying glucose and insulin topically to the wound, it heals quickly. The very old practice of treating deep wounds with honey or granulated sugar has been studied in controlled situations, including the treatment of diabetic ulcers, infected deep wounds following heart surgery, and wounds of lepers. The treatment eradicates bacterial infections better than some antiseptics, and accelerates healing without scarring, or with minimal scarring. The sugar regulates the communication between cells, and optimizes the synthesis of collagen and extracellular matrix.

An excess of insulin, causing hypoglycemia, can cause blood vessels, for example in the brain and kidneys, to become leaky, and this has been claimed to be an effect of insulin itself. However, the same leakiness can be produced by an analog of glucose that can't be metabolized, so that intracellular glycopenia is produced. The harmful effect that has been ascribed to excessive insulin can be prevented by maintaining an adequate supply of glucose (Uezu and Murakami, 1993), showing that it is the lack of glucose, rather than the excess insulin, that causes the vascular malfunction. Fructose also reduces the leakiness of blood vessels (Plante, et al., 2003). Many of the complications of diabetes are caused by increased vascular leakiness (Simard, et al., 2002).

Sugar can protect the beta-cells from the free fatty acids, apparently in the same ways that it protects the cells of blood vessels, restoring metabolic energy and preventing damage to the mitochondria. Glucose suppresses superoxide formation in beta-cells (Martens, et al., 2005) and apparently in other cells including brain cells. (Isaev, et al., 2008).

The beta-cell protecting effect of glucose is supported by bicarbonate and sodium. Sodium activates cells to produce carbon dioxide, allowing them to regulate calcium, preventing overstimulation and death. For a given amount of energy released, the oxidation of glucose produces more carbon dioxide and uses less oxygen than the oxidation of fatty acids.

The toxic excess of intracellular calcium that damages the insulin-secreting cells in the relative absence of carbon dioxide is analogous to the increased excitation of nerves and muscles that can be produced by hyperventilation.

In every type of tissue, it is the failure to oxidize glucose that produces oxidative stress and cellular damage. Even feeding enough sucrose to cause fat deposition in the liver can protect the liver from oxidative stress (Spolarics and Meyenhofer, 2000), possibly by mechanisms such as those involved in the treatment of alcoholic liver disease with saturated fats.

The active thyroid hormone, T3, protects the heart by supporting the oxidation of glucose (Liu, et al., 1998). The amount of T3 produced by the liver depends mainly on the amount of glucose available.

Animals that have been made diabetic with relatively low doses of the poison streptozotocin can recover functional beta-cells spontaneously, and the rate of recovery is higher in pregnant animals (Hartman, et al., 1989). Pregnancy stabilizes blood sugar at a higher level, and progesterone favors the oxidation of glucose rather than fats.

A recent study suggests that recovery of the pancreas can be very fast. A little glucose was infused for 4 days into rats, keeping the blood glucose level normal, and the mass of beta-cells was found to have increased 2.5 times. Cell division wasn't increased, so apparently the additional glucose was preventing the death of beta-cells, or stimulating the conversion of another type of cell to become insulin-secreting beta-cells (Jetton, et al., 2008).

That study is very important in relation to stem cells in general, because it either means that glandular cells are turning over ("streaming") at a much higher rate than currently recognized in biology and medicine, or it means that (when blood sugar is adequate) stimulated cells are able to recruit neighboring cells to participate in their specialized function. Either way, it shows the great importance of environmental factors in regulating our anatomy and physiology.

"Diabetologists" don't regularly measure their patients' insulin, but they usually make the assumption that insulin is the main factor regulating blood sugar. In one study, it was found that the insulin molecule itself, immunoreactive insulin, accounted for only about 8% of the serum's insulin-like action. The authors of that study believed that potassium was the main other factor in the serum that promoted the disposition of glucose. Since potassium and glucose are both always present in the blood, their effects on each other have usually been ignored.

Cellular activation (by electrical, nervous, chemical, or mechanical stimulation) causes glucose to be absorbed and oxidized, even in the absence of insulin and in otherwise insulin-resistant individuals. I think this local interaction between the need for energy and the production of energy predominates in good health, with insulin and other hormones facilitating the process in times of stress. A variety of local tissue regulators, including GABA and glutamate, probably participate in these interactions, in the brain, endocrine glands, muscles, and other tissues, and are probably involved in the relaxing and analgesic actions of the sugars.

The GABA system (GABA is highly concentrated in the beta-cells) is involved in regulating blood sugar, inhibiting the release of glucagon when glucose isn't needed, and apparently allowing the beta cells to discriminate between amino acids and glucose (Gu, et al., 1993) and acting as a survival and growth factor for neighboring cells (Ligon, et al., 2007).

The damaged beta-cells lose the enzyme (glutamate dehydrogenase) that makes GABA, and their ratio of linoleic acid to saturated and monounsaturated fat increases, a change that corresponds to a decreased metabolism of glucose.

The free intracellular calcium that can become toxic is normally bound safely by well-energized mitochondria, and in the bloodstream it is kept safely complexed with carbon dioxide. The thyroid hormone, producing carbon dioxide, helps to sustain the level of ionized calcium (Lindblom, et al., 2001). In a vitamin D deficiency, or a calcium deficiency, the parathyroid hormone increases, and this hormone can contribute to many inflammatory and degenerative processes, including diabetes. Consuming enough calcium and vitamin D to keep the parathyroid hormone suppressed is important to protect against the degenerative conditions.

When animals were fed an otherwise balanced diet lacking vitamin D, with the addition of either 68% sucrose or 68% starch, the bones of those on the starch diet failed to develop normally, as would be expected with a vitamin D deficiency, and their serum calcium was low. However, the bones of those on the diet with sucrose developed properly, and didn't show evidence of being calcium deficient, though they weren't quite as heavy as those that also received an adequate amount of vitamin D (Artus, 1975). This study suggests that the famous dietetic emphasis on the "complex carbohydrates," i.e., starches, has made an important contribution to the prevalence of osteoporosis, as well as obesity and other degeneration conditions.

Both vitamin D and vitamin K, another important calcium-regulating nutrient, are now known to prevent diabetes. Both of these vitamins require carbon dioxide for disposing of calcium properly, preventing its toxicity. When carbon dioxide is inadequate, for example from simple hyperventilation or from hypothyroidism, calcium is allowed to enter cells, causing inappropriate excitation, sometimes followed by calcification.

Keeping an optimal level of carbon dioxide (for example, when adapted to high altitude) causes calcium to be controlled, resulting in lowered parathyroid hormone, an effect similar to supplementing with calcium, vitamin D, and vitamin K. (E.g., Nicolaidou, et al, 2006.) Glycine, like carbon dioxide, protects proteins against oxidative damage (Lezcano, et al., 2006), so including gelatin (very rich in glycine) in the diet is probably protective.

The contribution of PTH to inflammation and degeneration is just being acknowledged (e.g., Kuwabara, 2008), but the mechanism undoubtedly involves the fact that it is lipolytic, increasing the concentration of free fatty acids that suppress metabolism and interfere with the use of glucose.

When we talk about increasing the metabolic rate, and the benefits it produces, we are comparing the rate of metabolism in the presence of thyroid, sugar, salt, and adequate protein to the "normal" diet, containing smaller amounts of those "stimulating" substances. It would be more accurate if we would speak of the suppressive nature of the habitual diet, in relation to the more optimal diet, which provides more energy for work and adaptation, while minimizing the toxic effects of free radicals.

Feeding animals a normal diet with the addition of Coca-Cola, or with a similar amount of sucrose, has been found to let them increase their calorie intake by 50% without increasing their weight gain (Bukowiecki, et al., 1983). Although plain sucrose can alleviate the metabolic suppression of an average diet, the effect of sugars in the diet is much more likely to be healthful in the long run when they are associated with an abundance of minerals, as in milk and fruit, which provide potassium and calcium and other protective nutrients.

Avoiding the starches such as cereals and beans, and using fruits as a major part of the diet helps to minimize the effects of the polyunsaturated fats.

Celiac disease or gluten sensitivity is associated with diabetes and hypothyroidism. There is a cross reaction between the gluten protein molecule and an enzyme which is expressed under the influence of estrogen. This is another reason for simply avoiding cereal products.

Brewers' yeast has been used traditionally to correct diabetes, and its high content of niacin and other B vitamins and potassium might account for its beneficial effects. However, eating a large quantity of it is likely to cause gas, so some people prefer to extract the soluble nutrients with hot water. Yeast contains a considerable amount of estrogen, and the water extract probably leaves much of that in the insoluble starchy residue. Liver is another rich source of the B vitamins as well as the oily vitamins, but it can suppress thyroid function, so usually one meal a week is enough.

The supplements that most often help to correct diabetes-like conditions are niacinamide, thiamine, thyroid, and progesterone or pregnenolone. Vitamins D and K are clearly protective against developing diabetes, and their effects on many regulatory processes suggest that they would also help to correct existing hyperglycemia.

Drinking coffee seems to be very protective against developing diabetes. Its niacin and magnesium are clearly important, but it is also a rich source of antioxidants, and it helps to maintain normal thyroid and progesterone production. Chocolate is probably protective too, and it is a good source of magnesium and antioxidants.

A recent study (Xia, et al., 2008) showed that inhibition of cholesterol synthesis by beta-cells impairs insulin synthesis, and that replenishing cholesterol restores the insulin secretion. Green tea contains this type of inhibitor, but its use has nevertheless been associated with a reduced risk of diabetes. Caffeine is likely to be the main protective substance in these foods.

Although antioxidants can be protective against diabetes, not all things sold as "antioxidants" are safe; many botannical "antioxidants" are estrogenic. Hundreds of herbal products can lower blood sugar, but many of them are simply toxic, and the reduction of blood glucose can make some problems worse.

The supplements I mention above--including caffeine--have antiinflammatory, antioxidative and energy-promoting effects. Inflammation, interfering with cellular energy production, is probably the essential feature of the things called diabetes.

Aspirin has a very broad spectrum of antiinflammatory actions, and is increasingly being recommended for preventing complications of diabetes. One of the consequences of inflammation is hyperglycemia, and aspirin helps to correct that (Yuan, et al., 2001), while protecting proteins against oxidative damage (Jafarnejad, et al, 2001).

If Dr. Budd's thinking (and results) had been more widely accepted when his publications appeared, thinking about "diabetes" might have led to earlier investigation of the syndromes of stress and tissue wasting, with insulin being identified as just one of many regulatory substances, and a large amount of useless and harmful activity treating hyperglycemia as the enemy, rather than part of an adaptive reaction, might have been avoided.
Diabetes is caused by passing a genetically set body fat percentage limit

determined by your genes if you cross a certain body fat your beta cells won’t function properly and as a result insulin resistance occurs

this is why some people don’t have diabetes at 30% bf while others have it at 10%

it’s genetics

pufa does some metabolic damage which can increase obesity risk
 
I thought you'd post some sugarbabes
 
sougar
 
  • +1
Reactions: Toth's thot

Similar threads

Bug
Replies
25
Views
211
asdvek
asdvek
mug
Replies
20
Views
939
RICHCELDOM
RICHCELDOM
P
Replies
13
Views
302
projectwomp
P
20/04/2008
Replies
78
Views
2K
20/04/2008
20/04/2008
androgenic
Replies
96
Views
3K
chadhamed
chadhamed

Users who are viewing this thread

Back
Top